Skip to main content
Erschienen in: The International Journal of Advanced Manufacturing Technology 1-2/2020

15.02.2020 | ORIGINAL ARTICLE

Numerical simulation and experimental investigations on a three-roller setting round process for thin-walled pipes

verfasst von: Xueying Huang, Gaochao Yu, Jun Zhao, Zhenkai Mu, Zhiyuan Zhang, Rui Ma

Erschienen in: The International Journal of Advanced Manufacturing Technology | Ausgabe 1-2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In order to reveal the process principle of three-roller setting round process and optimize the setting round strategy, the three-roller setting round process is simulated and experimented. The results show that there are three positive bending regions and three reverse bending regions in the cross section of pipe in the setting round process. The absolute value of equivalent stress and equivalent strain not only decreases from both ends to the geometric neutral layer along the thickness direction of pipe but also decreases from the center of each positive and negative bending region to both sides along the circumferential direction of pipe. The distribution of maximum stress and minimum stress conforms to the characteristics of pure bending deformation in the setting round process. The direction of tangential stress is the direction of main stress, and the direction of tangential strain is the direction of main strain. The geometrical dimensions of pipe do not change in axial and radial directions. The residual ovality of pipes with different initial ovality is basically the same, which proves that the uniform curvature theorem of reciprocating bending is correct. The residual ovality of pipes decreases with the increase of the reduction. With the increase of the relative thickness of pipes, the optimum reduction of pipes decreases gradually. Comparing experimental results with simulation results, the residual ovality of pipes can be less than 0.2%.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zhao J, Yin J, Ma R, Ma LX (2011) Springback equation of small curvature plane bending. SCIENCE CHINA Technol Sci 54(9):2386–2396CrossRef Zhao J, Yin J, Ma R, Ma LX (2011) Springback equation of small curvature plane bending. SCIENCE CHINA Technol Sci 54(9):2386–2396CrossRef
2.
Zurück zum Zitat Zhao J, Yin J (2011) Springback analysis of expanding and setting round for large diameter pipe. J Mech Eng 47(12):32–42MathSciNetCrossRef Zhao J, Yin J (2011) Springback analysis of expanding and setting round for large diameter pipe. J Mech Eng 47(12):32–42MathSciNetCrossRef
3.
Zurück zum Zitat Karrech A, Seibi A (2010) Analytical model for the expansion of tubes under tension. J Mater Process Technol 210:356–362CrossRef Karrech A, Seibi A (2010) Analytical model for the expansion of tubes under tension. J Mater Process Technol 210:356–362CrossRef
4.
Zurück zum Zitat He AX, Li RC (2012) Large-diameter line pipe expanding process. Appl Mech Mater 192:180–184CrossRef He AX, Li RC (2012) Large-diameter line pipe expanding process. Appl Mech Mater 192:180–184CrossRef
5.
Zurück zum Zitat Fan LF, Gao Y, Yan JX, Yun JB (2014) Effects of geometry parameters on mechanical expanding of large diameter welding pipe. Adv Mater Res 986-987:837–840CrossRef Fan LF, Gao Y, Yan JX, Yun JB (2014) Effects of geometry parameters on mechanical expanding of large diameter welding pipe. Adv Mater Res 986-987:837–840CrossRef
6.
Zurück zum Zitat Fan LF, Gao Y, Yan JX, Yun JB (2014) Deformation characteristic analysis on mechanical expanding of large diameter welding pipe. Appl Mech Mater 623:125–128CrossRef Fan LF, Gao Y, Yan JX, Yun JB (2014) Deformation characteristic analysis on mechanical expanding of large diameter welding pipe. Appl Mech Mater 623:125–128CrossRef
7.
Zurück zum Zitat Herynk MD, Kyriakides S, Onoufriou A (2007) Effects of the UOE/UOC pipe manufacturing processes on pipe collapse pressure. Int J Mech Sci 49(5):533–553CrossRef Herynk MD, Kyriakides S, Onoufriou A (2007) Effects of the UOE/UOC pipe manufacturing processes on pipe collapse pressure. Int J Mech Sci 49(5):533–553CrossRef
8.
Zurück zum Zitat Yin J, Zhao J, Sun HL, Zhan PP (2011) Precise compression and setting round by mold for large pipes. Opt Precis Eng 19(9):2072–2078CrossRef Yin J, Zhao J, Sun HL, Zhan PP (2011) Precise compression and setting round by mold for large pipes. Opt Precis Eng 19(9):2072–2078CrossRef
9.
Zurück zum Zitat Jun TS, Song WH, Park JY, Hur DC (2018) A comparison of mechanical properties and residual stresses of line pipes sized by expansion and compression process. Int J Press Vessel Pip 163:1–7CrossRef Jun TS, Song WH, Park JY, Hur DC (2018) A comparison of mechanical properties and residual stresses of line pipes sized by expansion and compression process. Int J Press Vessel Pip 163:1–7CrossRef
10.
Zurück zum Zitat Zhao J, Zhan PP, Ma R, Zhai RX (2013) Quantitative prediction of reduction in large pipe setting round process. Chinese J Mech Eng 26(04):722–729CrossRef Zhao J, Zhan PP, Ma R, Zhai RX (2013) Quantitative prediction of reduction in large pipe setting round process. Chinese J Mech Eng 26(04):722–729CrossRef
11.
Zurück zum Zitat Pan X, Chen P, Qian Y (2009) Numerical simulation of rounding-sizing process of large-sized straight welded pipe. Steel Pipe 38(5):70–73 Pan X, Chen P, Qian Y (2009) Numerical simulation of rounding-sizing process of large-sized straight welded pipe. Steel Pipe 38(5):70–73
12.
Zurück zum Zitat He YL, Qiao JX, Jia CD (1998) Research on setting round process of welding pipe. Welded Pipe and Tube 3:20–22 He YL, Qiao JX, Jia CD (1998) Research on setting round process of welding pipe. Welded Pipe and Tube 3:20–22
13.
Zurück zum Zitat Wang GR (1991) Design and application of setting round die for pressure vessel. Int J Press Vessel Tech 6:40–44 Wang GR (1991) Design and application of setting round die for pressure vessel. Int J Press Vessel Tech 6:40–44
14.
Zurück zum Zitat Zhao J, Zhan PP, Ma R, Zhai RX (2012) Control strategy of over-bending setting round for pipe-end of large pipes by mould press type method. Trans Nonferrous Metals Soc China 22:329–334CrossRef Zhao J, Zhan PP, Ma R, Zhai RX (2012) Control strategy of over-bending setting round for pipe-end of large pipes by mould press type method. Trans Nonferrous Metals Soc China 22:329–334CrossRef
15.
Zurück zum Zitat Zhao J, Zhan PP, Ma R, Zhai RX (2014) Prediction and control of springback in setting round process for pipe-end of large pipe. Int J Press Vessel Pip 116:56–64CrossRef Zhao J, Zhan PP, Ma R, Zhai RX (2014) Prediction and control of springback in setting round process for pipe-end of large pipe. Int J Press Vessel Pip 116:56–64CrossRef
16.
Zurück zum Zitat Zhan PP, Zhao J, Shang JH, Ma R (2013) Study on control policy of over-bending setting round for pipe ends of large pipes. China Mech Eng 24(9):1220–1224 Zhan PP, Zhao J, Shang JH, Ma R (2013) Study on control policy of over-bending setting round for pipe ends of large pipes. China Mech Eng 24(9):1220–1224
17.
Zurück zum Zitat Gandhi AH, Raval HK (2008) Analytical and empirical modeling of top roller position for three-roller cylindrical bending of plates and its experimental verification. J Mater Process Technol 197:268–278CrossRef Gandhi AH, Raval HK (2008) Analytical and empirical modeling of top roller position for three-roller cylindrical bending of plates and its experimental verification. J Mater Process Technol 197:268–278CrossRef
18.
Zurück zum Zitat Chudasama MK, Raval HK (2014) Bending force prediction for dynamic roll-bending during 3-roller conical bending process. J Manuf Process 16(2):284–295CrossRef Chudasama MK, Raval HK (2014) Bending force prediction for dynamic roll-bending during 3-roller conical bending process. J Manuf Process 16(2):284–295CrossRef
19.
Zurück zum Zitat Fu Z, Tian XL, Chen W, Hu BK, Yan XL (2013) Analytical modeling and numerical simulation for three-roll bending forming of sheet metal. Int J Adv Manuf Technol 69:1639–1647CrossRef Fu Z, Tian XL, Chen W, Hu BK, Yan XL (2013) Analytical modeling and numerical simulation for three-roll bending forming of sheet metal. Int J Adv Manuf Technol 69:1639–1647CrossRef
20.
Zurück zum Zitat Feng ZK, Champliaud H (2011) Modeling and simulation of asymmetrical three-roll bending process. Simul Model Pract Theory 19:1913–1917CrossRef Feng ZK, Champliaud H (2011) Modeling and simulation of asymmetrical three-roll bending process. Simul Model Pract Theory 19:1913–1917CrossRef
21.
Zurück zum Zitat Feng ZK, Champliaud H, Dao TM (2009) Numerical study of non-kinematical conical bending with cylindrical rolls. Simul Model Pract Theory 17:1710–1722CrossRef Feng ZK, Champliaud H, Dao TM (2009) Numerical study of non-kinematical conical bending with cylindrical rolls. Simul Model Pract Theory 17:1710–1722CrossRef
22.
Zurück zum Zitat Feng ZK, Champliaud H (2011) Three-stage process for improving roll bending quality. Simul Model Pract Theory 19:887–898CrossRef Feng ZK, Champliaud H (2011) Three-stage process for improving roll bending quality. Simul Model Pract Theory 19:887–898CrossRef
23.
Zurück zum Zitat Feng ZK, Champliaud H (2012) Investigation of non-kinematic conical roll bending process with conical rolls. Simulation Modelling Practice and Theory 27:65–75CrossRef Feng ZK, Champliaud H (2012) Investigation of non-kinematic conical roll bending process with conical rolls. Simulation Modelling Practice and Theory 27:65–75CrossRef
24.
Zurück zum Zitat Salem J, Champliaud H, Feng ZK, Dao TM (2016) Experimental analysis of an asymmetrical three-roll bending process. Int J Adv Manuf Technol 83(9):1823–1833CrossRef Salem J, Champliaud H, Feng ZK, Dao TM (2016) Experimental analysis of an asymmetrical three-roll bending process. Int J Adv Manuf Technol 83(9):1823–1833CrossRef
25.
Zurück zum Zitat Yu GC, Zhao J, Xing JJ, Zhao FP, Li SL (2017) Research on the symmetrical three-roller setting round process. J Mech Eng 14:150–157 Yu GC, Zhao J, Xing JJ, Zhao FP, Li SL (2017) Research on the symmetrical three-roller setting round process. J Mech Eng 14:150–157
26.
Zurück zum Zitat Zhao J, Yu GC, Ma R (2016) A mechanical model of symmetrical three-roller setting round process: the static bending stage. J Mater Process Technol 231:501–512CrossRef Zhao J, Yu GC, Ma R (2016) A mechanical model of symmetrical three-roller setting round process: the static bending stage. J Mater Process Technol 231:501–512CrossRef
27.
Zurück zum Zitat Yu GC, Zhao J, Zhan PP (2017) Elastic-plastic secondary indeterminate problem for thin-walled pipe through the inner-wall loading by three-point bending. J Struct Mech 45(2):219–238CrossRef Yu GC, Zhao J, Zhan PP (2017) Elastic-plastic secondary indeterminate problem for thin-walled pipe through the inner-wall loading by three-point bending. J Struct Mech 45(2):219–238CrossRef
28.
Zurück zum Zitat Yu GC, Zhao J, Ma R, Zhai RX (2016) Uniform curvature theorem by reciprocating bending and its experimental verification. J Mech Eng 52(18):57–63CrossRef Yu GC, Zhao J, Ma R, Zhai RX (2016) Uniform curvature theorem by reciprocating bending and its experimental verification. J Mech Eng 52(18):57–63CrossRef
29.
Zurück zum Zitat Zhao J (2013) Equivalence relation of curved beam pure bending and its experimental verification. J Mech Eng 49(16):100–106CrossRef Zhao J (2013) Equivalence relation of curved beam pure bending and its experimental verification. J Mech Eng 49(16):100–106CrossRef
Metadaten
Titel
Numerical simulation and experimental investigations on a three-roller setting round process for thin-walled pipes
verfasst von
Xueying Huang
Gaochao Yu
Jun Zhao
Zhenkai Mu
Zhiyuan Zhang
Rui Ma
Publikationsdatum
15.02.2020
Verlag
Springer London
Erschienen in
The International Journal of Advanced Manufacturing Technology / Ausgabe 1-2/2020
Print ISSN: 0268-3768
Elektronische ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-020-05087-2

Weitere Artikel der Ausgabe 1-2/2020

The International Journal of Advanced Manufacturing Technology 1-2/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.