Skip to main content
Erschienen in: Mechanics of Composite Materials 4/2017

05.09.2017

Numerical Simulation and Experimental Verification of Hollow and Foam-Filled Flax-Fabric-Reinforced Epoxy Tubular Energy Absorbers Subjected to Crashing

verfasst von: J. Sliseris, L. Yan, B. Kasal

Erschienen in: Mechanics of Composite Materials | Ausgabe 4/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Numerical methods for simulating hollow and foam-filled flax-fabric-reinforced epoxy tubular energy absorbers subjected to lateral crashing are presented. The crashing characteristics, such as the progressive failure, load–displacement response, absorbed energy, peak load, and failure modes, of the tubes were simulated and calculated numerically. A 3D nonlinear finite-element model that allows for the plasticity of materials using an isotropic hardening model with strain rate dependence and failure is proposed. An explicit finite-element solver is used to address the lateral crashing of the tubes considering large displacements and strains, plasticity, and damage. The experimental nonlinear crashing load vs. displacement data are successfully described by using the finite-element model proposed. The simulated peak loads and absorbed energy of the tubes are also in good agreement with experimental results.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat H. Ku, H. Wang, N. Pattarachaiyakoop, and M. Trada, “A review on the tensile properties of natural fiber reinforced polymer composites,” Composites, Part B, 42, No. 4, 856-873 (2011).CrossRef H. Ku, H. Wang, N. Pattarachaiyakoop, and M. Trada, “A review on the tensile properties of natural fiber reinforced polymer composites,” Composites, Part B, 42, No. 4, 856-873 (2011).CrossRef
2.
Zurück zum Zitat S. Su and N. Chouw, “Microstructure, flexural properties and durability of coir fiber reinforced concrete beams externally strengthened with flax FRP composites,” Composites, Part B, 80, 343-354 (2015).CrossRef S. Su and N. Chouw, “Microstructure, flexural properties and durability of coir fiber reinforced concrete beams externally strengthened with flax FRP composites,” Composites, Part B, 80, 343-354 (2015).CrossRef
3.
Zurück zum Zitat D. B. Dittenber and H. V. S. GangaRao. “Critical review of recent publications on use of natural composites in infrastructure,” Composites, Part A, 43, 1419-1429 (2012).CrossRef D. B. Dittenber and H. V. S. GangaRao. “Critical review of recent publications on use of natural composites in infrastructure,” Composites, Part A, 43, 1419-1429 (2012).CrossRef
4.
Zurück zum Zitat G. Koronis, A. Silva, and M. Fontul, “Green composites: a review of adequate materials for automotive applications,” Composites, Part B, 44, No. 1, 120-127 (2013).CrossRef G. Koronis, A. Silva, and M. Fontul, “Green composites: a review of adequate materials for automotive applications,” Composites, Part B, 44, No. 1, 120-127 (2013).CrossRef
5.
Zurück zum Zitat L. Yan, N. Chouw, and K. Jayaraman, “Effect of UV and water spraying on the mechanical properties of flax fabric reinforced polymer composites used for civil engineering application,” Mater. Des., 71, 17-25 (2015).CrossRef L. Yan, N. Chouw, and K. Jayaraman, “Effect of UV and water spraying on the mechanical properties of flax fabric reinforced polymer composites used for civil engineering application,” Mater. Des., 71, 17-25 (2015).CrossRef
7.
Zurück zum Zitat L. Yan, N. Chouw, and K. Jayaraman, “Lateral crushing of empty and polyurethane-foam filled natural flax fabric reinforced epoxy composite tubes,” Composites, Part B, 63, 15-26 (2014).CrossRef L. Yan, N. Chouw, and K. Jayaraman, “Lateral crushing of empty and polyurethane-foam filled natural flax fabric reinforced epoxy composite tubes,” Composites, Part B, 63, 15-26 (2014).CrossRef
8.
Zurück zum Zitat M. M. Kabir, H. Wang, K. T. Lau, and F. Cardona, “Chemical treatments on plant-based natural fiber reinforced polymer composites: an overview,” Composites, Part B, 43, No. 7, 2883-2892 (2012).CrossRef M. M. Kabir, H. Wang, K. T. Lau, and F. Cardona, “Chemical treatments on plant-based natural fiber reinforced polymer composites: an overview,” Composites, Part B, 43, No. 7, 2883-2892 (2012).CrossRef
9.
Zurück zum Zitat L. Yan and N. Chouw, “Effect of water, seawater and alkaline solution ageing on mechanical properties of flax fabric/epoxy composites used for civil engineering application,” Constr. Build. Mater., 99, 118-127 (2015).CrossRef L. Yan and N. Chouw, “Effect of water, seawater and alkaline solution ageing on mechanical properties of flax fabric/epoxy composites used for civil engineering application,” Constr. Build. Mater., 99, 118-127 (2015).CrossRef
10.
Zurück zum Zitat L. Yan, N. Chouw, and K. Jayaraman, “Flax fiber and its composites. – A review,” Composites, Part B, 56, 296-317 (2014).CrossRef L. Yan, N. Chouw, and K. Jayaraman, “Flax fiber and its composites. – A review,” Composites, Part B, 56, 296-317 (2014).CrossRef
11.
Zurück zum Zitat L. Yan, B. Kasal, and L. Huang, “A review of recent research on the use of cellulosic fibers, their fiber fabric reinforced cementitious, geo-polymer and polymer composites in civil engineering,” Composites, Part B, 92, 94-132 (2016).CrossRef L. Yan, B. Kasal, and L. Huang, “A review of recent research on the use of cellulosic fibers, their fiber fabric reinforced cementitious, geo-polymer and polymer composites in civil engineering,” Composites, Part B, 92, 94-132 (2016).CrossRef
13.
Zurück zum Zitat L. Yan and N. Chouw, “Natural FRP tube confined fiber reinforced concrete under pure axial compression: a comparison with glass/carbon FRP,” Thin-walled Struct., 82, 159-169 (2014).CrossRef L. Yan and N. Chouw, “Natural FRP tube confined fiber reinforced concrete under pure axial compression: a comparison with glass/carbon FRP,” Thin-walled Struct., 82, 159-169 (2014).CrossRef
14.
Zurück zum Zitat Y. Y. Xia, G. J. Xian, I. Kafodya, and H. Li, “Compression behavior of concrete cylinders externally confined by flax fiber reinforced polymer sheets,” Adv. in Struct. Eng., 17, No. 12, 1825-1833 (2014).CrossRef Y. Y. Xia, G. J. Xian, I. Kafodya, and H. Li, “Compression behavior of concrete cylinders externally confined by flax fiber reinforced polymer sheets,” Adv. in Struct. Eng., 17, No. 12, 1825-1833 (2014).CrossRef
15.
Zurück zum Zitat L. Yan, N. Chouw, and K. Jayaraman, “Effect of column parameters on flax FRP confined coir fiber reinforced concrete,” Constr. Build. Mater., 55. No. 31, 299-312 (2014).CrossRef L. Yan, N. Chouw, and K. Jayaraman, “Effect of column parameters on flax FRP confined coir fiber reinforced concrete,” Constr. Build. Mater., 55. No. 31, 299-312 (2014).CrossRef
16.
Zurück zum Zitat L. Huang, Q. Xu, and B. Kasal, “Reinforced concrete beams strengthened with externally bonded natural flax FRP plates,” Composites, Part B, 91, 569-578 (2016).CrossRef L. Huang, Q. Xu, and B. Kasal, “Reinforced concrete beams strengthened with externally bonded natural flax FRP plates,” Composites, Part B, 91, 569-578 (2016).CrossRef
17.
Zurück zum Zitat M. F. M. Alkbir, S. M. Sapuan, A. A. Nuraini, and M. R. Ishak, “Fiber properties and crashworthiness parameters of natural fiber-reinforced composite structure: A literature review,” Compos. Struct., 148, 59-73 (2016).CrossRef M. F. M. Alkbir, S. M. Sapuan, A. A. Nuraini, and M. R. Ishak, “Fiber properties and crashworthiness parameters of natural fiber-reinforced composite structure: A literature review,” Compos. Struct., 148, 59-73 (2016).CrossRef
18.
Zurück zum Zitat J. Meredith, S. R. Coles, R. Poe, E. Coing, et al., “On the static and dynamic properties of flax and cordenka epoxy composites,” Compos. Sci. Technol., 80, 31-38 (2013).CrossRef J. Meredith, S. R. Coles, R. Poe, E. Coing, et al., “On the static and dynamic properties of flax and cordenka epoxy composites,” Compos. Sci. Technol., 80, 31-38 (2013).CrossRef
19.
Zurück zum Zitat L. B. Yan and N. Chouw, “Crashworthiness characteristics of flax fiber reinforced epoxy tubes for energy absorption application,” Mater. Des., 51, 629-640 (2013).CrossRef L. B. Yan and N. Chouw, “Crashworthiness characteristics of flax fiber reinforced epoxy tubes for energy absorption application,” Mater. Des., 51, 629-640 (2013).CrossRef
20.
Zurück zum Zitat L. B. Yan, N. Chouw, and K. Jayaraman, “Effect of triggering and polyurethane foam-filler on axial crushing of natural flax/epoxy composite tubes,” Mater. Des., 56, 528-541 (2014).CrossRef L. B. Yan, N. Chouw, and K. Jayaraman, “Effect of triggering and polyurethane foam-filler on axial crushing of natural flax/epoxy composite tubes,” Mater. Des., 56, 528-541 (2014).CrossRef
21.
Zurück zum Zitat J. Sliseris, H. Andra, M. Kabel, B. Plinke, O. Wirjadi, and G. Frolovs, “Numerical prediction of the stiffness and strength of medium density fiberboards,” Mech. Mater., 79, 73-84 (2014).CrossRef J. Sliseris, H. Andra, M. Kabel, B. Plinke, O. Wirjadi, and G. Frolovs, “Numerical prediction of the stiffness and strength of medium density fiberboards,” Mech. Mater., 79, 73-84 (2014).CrossRef
22.
Zurück zum Zitat J. Sliseris and K. Rocens, “Optimal design of composite plates with discrete variable stiffness,” Compos. Struct., 98, 15-23 (2013).CrossRef J. Sliseris and K. Rocens, “Optimal design of composite plates with discrete variable stiffness,” Compos. Struct., 98, 15-23 (2013).CrossRef
23.
Zurück zum Zitat J. Sliseris, L. Yan, and B Kasal, “Numerical modeling of flax short fiber reinforced and flax fiber fabric reinforced polymer composites,” Composites, Part B, 89, 143-154 (2016).CrossRef J. Sliseris, L. Yan, and B Kasal, “Numerical modeling of flax short fiber reinforced and flax fiber fabric reinforced polymer composites,” Composites, Part B, 89, 143-154 (2016).CrossRef
24.
Zurück zum Zitat O. Cousigné, D. Moncayo, D. Coutellier, P. Camanho, and H. Naceur, “Numerical modeling of nonlinearity, plasticity and damage in CFRP-woven composites for crash simulations,” Compos. Struct., 115, 75-88 (2014).CrossRef O. Cousigné, D. Moncayo, D. Coutellier, P. Camanho, and H. Naceur, “Numerical modeling of nonlinearity, plasticity and damage in CFRP-woven composites for crash simulations,” Compos. Struct., 115, 75-88 (2014).CrossRef
25.
Zurück zum Zitat X. C. Liu, J. Guo, C. Y. Bai, X. S. Sun, and R. Mou, “Drop test and crash simulation of a civil airplane fuselage section,” Chinese J. of Aeronautics, 28, No. 2, 447-456 (2015).CrossRef X. C. Liu, J. Guo, C. Y. Bai, X. S. Sun, and R. Mou, “Drop test and crash simulation of a civil airplane fuselage section,” Chinese J. of Aeronautics, 28, No. 2, 447-456 (2015).CrossRef
26.
Zurück zum Zitat F. X. Xu and C. Wang, “Dynamic axial crashing of tailor-welded blanks (TWBs) thin-walled structures with top-hat shaped section,” Advances in Engineering Software, 96, 70-82 (2016).CrossRef F. X. Xu and C. Wang, “Dynamic axial crashing of tailor-welded blanks (TWBs) thin-walled structures with top-hat shaped section,” Advances in Engineering Software, 96, 70-82 (2016).CrossRef
27.
Zurück zum Zitat V. Ferreira, L. P. Santos, M. Franzen, O. O. Ghouati, and R. Simoes, “Improving FEM crash simulation accuracy through local thickness estimation based on CAD data,” Advances in Engineering Software, 71, 52-62 (2014).CrossRef V. Ferreira, L. P. Santos, M. Franzen, O. O. Ghouati, and R. Simoes, “Improving FEM crash simulation accuracy through local thickness estimation based on CAD data,” Advances in Engineering Software, 71, 52-62 (2014).CrossRef
28.
Zurück zum Zitat Y. A. Abdel-Nasser, “Frontal crash simulation of vehicles against lighting columns using FEM,” Alexandria Engineering J., 52, No. 3, 295-299 (2013).CrossRef Y. A. Abdel-Nasser, “Frontal crash simulation of vehicles against lighting columns using FEM,” Alexandria Engineering J., 52, No. 3, 295-299 (2013).CrossRef
29.
Zurück zum Zitat M. Wallmeier, E. Linvill, M. Hauptmann, J. P. Majschak, and S. Östlund, “Explicit FEM analysis of the deep drawing of paperboard,” Mech. Mater., 89, 202-215 (2015).CrossRef M. Wallmeier, E. Linvill, M. Hauptmann, J. P. Majschak, and S. Östlund, “Explicit FEM analysis of the deep drawing of paperboard,” Mech. Mater., 89, 202-215 (2015).CrossRef
30.
Zurück zum Zitat S. X. Liang, P. B. Gning, and L. Guillaumat,” Quasi-static behaviour and damage assessment of flax/epoxy composites,” Mater. Des., 67, 344-353 (2015).CrossRef S. X. Liang, P. B. Gning, and L. Guillaumat,” Quasi-static behaviour and damage assessment of flax/epoxy composites,” Mater. Des., 67, 344-353 (2015).CrossRef
31.
Zurück zum Zitat C. Poilâne, Z. E. Cherif, F. Richard, A. Vivet, B. Ben Doudou, and J. Chen, “Polymer reinforced by flax fibers as a viscoelastoplastic material,” Compos. Struct., 112, 100-112 (2014).CrossRef C. Poilâne, Z. E. Cherif, F. Richard, A. Vivet, B. Ben Doudou, and J. Chen, “Polymer reinforced by flax fibers as a viscoelastoplastic material,” Compos. Struct., 112, 100-112 (2014).CrossRef
32.
Zurück zum Zitat M. Assarar, W. Zouari, H. Sabhi, R. Ayad, and J. M. Berthelot, “Evaluation of the damping of hybrid carbon–flax reinforced composites,” Compos. Struct., 132, 148-154 (2015).CrossRef M. Assarar, W. Zouari, H. Sabhi, R. Ayad, and J. M. Berthelot, “Evaluation of the damping of hybrid carbon–flax reinforced composites,” Compos. Struct., 132, 148-154 (2015).CrossRef
33.
Zurück zum Zitat O John. Hallquist. LS-DYNA Theory Manual. Livermore Software Technology Corporation, 2006. O John. Hallquist. LS-DYNA Theory Manual. Livermore Software Technology Corporation, 2006.
34.
Zurück zum Zitat K. J. Bathe, Finite Element Procedures, Prentice Hall, 1996. K. J. Bathe, Finite Element Procedures, Prentice Hall, 1996.
35.
Zurück zum Zitat G. M. Hulbert and J. Chung, “Explicit time integration algorithms for structural dynamics with optimal numerical dissipation,” Comput. Methods Appl. Mech. Eng., 137, 175-188 (1996).CrossRef G. M. Hulbert and J. Chung, “Explicit time integration algorithms for structural dynamics with optimal numerical dissipation,” Comput. Methods Appl. Mech. Eng., 137, 175-188 (1996).CrossRef
36.
Zurück zum Zitat O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method, Butterworth-Heinemann, Oxford, UK (2000) O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method, Butterworth-Heinemann, Oxford, UK (2000)
37.
Zurück zum Zitat C. Hernandez, A. Maranon, I.A. Ashcroft, and J. P. Casas-Rodriguez, “A computational determination of the Cowper–Symonds parameters from a single Taylor test,” Appl. Math. Modeling, 37, No. 7, 4698-4708 (2013).CrossRef C. Hernandez, A. Maranon, I.A. Ashcroft, and J. P. Casas-Rodriguez, “A computational determination of the Cowper–Symonds parameters from a single Taylor test,” Appl. Math. Modeling, 37, No. 7, 4698-4708 (2013).CrossRef
38.
Zurück zum Zitat J. Spahn, H. Andrä, M. Kabel, and R. Müller, “A multiscale approach for modeling progressive damage of composite materials using fast Fourier transforms,” Comput. Meth. Appl. Mech. Eng., 268, 871-883 (2014).CrossRef J. Spahn, H. Andrä, M. Kabel, and R. Müller, “A multiscale approach for modeling progressive damage of composite materials using fast Fourier transforms,” Comput. Meth. Appl. Mech. Eng., 268, 871-883 (2014).CrossRef
Metadaten
Titel
Numerical Simulation and Experimental Verification of Hollow and Foam-Filled Flax-Fabric-Reinforced Epoxy Tubular Energy Absorbers Subjected to Crashing
verfasst von
J. Sliseris
L. Yan
B. Kasal
Publikationsdatum
05.09.2017
Verlag
Springer US
Erschienen in
Mechanics of Composite Materials / Ausgabe 4/2017
Print ISSN: 0191-5665
Elektronische ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-017-9678-4

Weitere Artikel der Ausgabe 4/2017

Mechanics of Composite Materials 4/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.