Skip to main content
Erschienen in:

26.07.2023

Numerical simulation of a mixed-halide perovskite solar cell using doping gradient

verfasst von: Ritu, Gagandeep, Ramesh Kumar, Fakir Chand

Erschienen in: Journal of Computational Electronics | Ausgabe 5/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the present work, the simulation of a perovskite solar cell with the composition FTO/SnO2/MAPbI3−xClx/PTAA/Au is performed using SCAPS-1D software. Initially, the absorber thickness, doping concentration of the absorber, charge transport layer, doping gradient and intensity are optimised to enhance the efficiency of the cell. After all optimisation, power conversion efficiency of 34.95% overall is obtained. This enhancement of solar device performance is due to proper band alignment and improved electric field. Both factors result in proper carrier transportation and reduced recombination. The simulated results are also compared with experimental results, and are in good agreement. In addition, the J–V and QE curves are compared. The outcomes of our simulations offer a method that is appropriate for cell production.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Wu, Y., Wang, D., Liu, J., Cai, H.: Review of interface passivation of perovskite layer. Nanomaterials 11(3), 775 (2021)CrossRef Wu, Y., Wang, D., Liu, J., Cai, H.: Review of interface passivation of perovskite layer. Nanomaterials 11(3), 775 (2021)CrossRef
2.
Zurück zum Zitat Duan, Q., Ji, J., Hong, X., Fu, Y., Wang, C., Zhou, K., Liu, X., Yang, H., Wang, Z.Y.: Design of hole-transport-material free CH3NH3PbI3/CsSnI3 all-perovskite heterojunction efficient solar cells by device simulation. Sol. Energy 201, 555–560 (2020)CrossRef Duan, Q., Ji, J., Hong, X., Fu, Y., Wang, C., Zhou, K., Liu, X., Yang, H., Wang, Z.Y.: Design of hole-transport-material free CH3NH3PbI3/CsSnI3 all-perovskite heterojunction efficient solar cells by device simulation. Sol. Energy 201, 555–560 (2020)CrossRef
3.
Zurück zum Zitat Obraztsov, P.A., Bulgakova, V.V., Chizhov, P.A., Ushakov, A.A., Gets, D.S., Makarov, S.V., Bukin, V.V.: Hybrid perovskite terahertz photoconductive antenna. Nanomaterials 11(2), 313 (2021)CrossRef Obraztsov, P.A., Bulgakova, V.V., Chizhov, P.A., Ushakov, A.A., Gets, D.S., Makarov, S.V., Bukin, V.V.: Hybrid perovskite terahertz photoconductive antenna. Nanomaterials 11(2), 313 (2021)CrossRef
4.
Zurück zum Zitat Jamal, M.S., Bashar, M.S., Hasan, A.M., Almutairi, Z.A., Alharbi, H.F., Alharthi, N.H., Akhtaruzzaman, M.: Fabrication techniques and morphological analysis of perovskite absorber layer for high-efficiency perovskite solar cell: a review. Renew. Sustain. Energy Rev. 98, 469 (2018)CrossRef Jamal, M.S., Bashar, M.S., Hasan, A.M., Almutairi, Z.A., Alharbi, H.F., Alharthi, N.H., Akhtaruzzaman, M.: Fabrication techniques and morphological analysis of perovskite absorber layer for high-efficiency perovskite solar cell: a review. Renew. Sustain. Energy Rev. 98, 469 (2018)CrossRef
5.
Zurück zum Zitat Song, D.H., Heo, J.H., Han, H.J., You, M.S., Im, S.H.: Reproducible formation of uniform CH3NH3PbI3−xClx mixed halide perovskite film by separation of the powder formation and spin-coating process. J. Power Sources 310, 130–136 (2016)CrossRef Song, D.H., Heo, J.H., Han, H.J., You, M.S., Im, S.H.: Reproducible formation of uniform CH3NH3PbI3−xClx mixed halide perovskite film by separation of the powder formation and spin-coating process. J. Power Sources 310, 130–136 (2016)CrossRef
6.
Zurück zum Zitat Akhundova, F., Lüer, L., Osvet, A., Hauch, J., Peters, I.M., Forberich, K., Brabec, C.: Building process design rules for microstructure control in wide-bandgap mixed halide perovskite solar cells by a high-throughput approach. Appl. Phys. Lett. 118(24), 243903 (2021)CrossRef Akhundova, F., Lüer, L., Osvet, A., Hauch, J., Peters, I.M., Forberich, K., Brabec, C.: Building process design rules for microstructure control in wide-bandgap mixed halide perovskite solar cells by a high-throughput approach. Appl. Phys. Lett. 118(24), 243903 (2021)CrossRef
7.
Zurück zum Zitat Ghahremanirad, E., Olyaee, S., Nejand, B.A., Nazari, P., Ahmadi, V., Abedi, K.: Improving the performance of perovskite solar cells using kesterite mesostructure and plasmonic network. Sol. Energy 169, 498 (2018)CrossRef Ghahremanirad, E., Olyaee, S., Nejand, B.A., Nazari, P., Ahmadi, V., Abedi, K.: Improving the performance of perovskite solar cells using kesterite mesostructure and plasmonic network. Sol. Energy 169, 498 (2018)CrossRef
8.
Zurück zum Zitat Tong, G., Li, H., Li, G., Zhang, T., Li, C., Yu, L., Chen, K.: Mixed cation perovskite solar cells by stack-sequence chemical vapor deposition with self-passivation and gradient absorption layer. Nano Energy 48, 536 (2018)CrossRef Tong, G., Li, H., Li, G., Zhang, T., Li, C., Yu, L., Chen, K.: Mixed cation perovskite solar cells by stack-sequence chemical vapor deposition with self-passivation and gradient absorption layer. Nano Energy 48, 536 (2018)CrossRef
9.
Zurück zum Zitat Ghahremanirad, E., Olyaee, S., Hedayati, M.: The influence of embedded plasmonic nanostructures on the optical absorption of perovskite solar cell. Photonics 6, 2 (2019)CrossRef Ghahremanirad, E., Olyaee, S., Hedayati, M.: The influence of embedded plasmonic nanostructures on the optical absorption of perovskite solar cell. Photonics 6, 2 (2019)CrossRef
10.
Zurück zum Zitat Chen, Y., Zhang, M., Li, F., Yang, Z.: Recent progress in perovskite solar cells: status and future. Coatings 13(3), 644 (2023)CrossRef Chen, Y., Zhang, M., Li, F., Yang, Z.: Recent progress in perovskite solar cells: status and future. Coatings 13(3), 644 (2023)CrossRef
11.
Zurück zum Zitat Wei, X., Zhang, P., Bai, Y., Chen, Q.: In Halide Perovskites for Photonics, pp. 3–1. AIP Publishing LLC., Melville, New York (2021) Wei, X., Zhang, P., Bai, Y., Chen, Q.: In Halide Perovskites for Photonics, pp. 3–1. AIP Publishing LLC., Melville, New York (2021)
12.
Zurück zum Zitat Mehdi, H., Mhamdi, A., Bouazizi, A.: Effect of perovskite precursor ratios and solvents volume on the efficiency of MAPbI3-xClx mixed halide perovskite solar cells. Mater. Sci. Semicond. Process. 109, 104915 (2020)CrossRef Mehdi, H., Mhamdi, A., Bouazizi, A.: Effect of perovskite precursor ratios and solvents volume on the efficiency of MAPbI3-xClx mixed halide perovskite solar cells. Mater. Sci. Semicond. Process. 109, 104915 (2020)CrossRef
13.
Zurück zum Zitat Lian, Z., Yan, Q., Gao, T., Ding, J., Lv, Q., Ning, C., Sun, J.L.: Perovskite CH3NH3PbI3 (Cl) single crystals: rapid solution growth, unparalleled crystalline quality, and low trap density toward 108 cm–3. J. Am. Chem. Soc. 138(30), 9409–9412 (2016)CrossRef Lian, Z., Yan, Q., Gao, T., Ding, J., Lv, Q., Ning, C., Sun, J.L.: Perovskite CH3NH3PbI3 (Cl) single crystals: rapid solution growth, unparalleled crystalline quality, and low trap density toward 108 cm–3. J. Am. Chem. Soc. 138(30), 9409–9412 (2016)CrossRef
14.
Zurück zum Zitat Stranks, S.D., Eperon, G.E., Grancini, G., Menelaou, C., Alcocer, M.J., Leijtens, T., Snaith, H.J.: Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342(6156), 341–344 (2013)CrossRef Stranks, S.D., Eperon, G.E., Grancini, G., Menelaou, C., Alcocer, M.J., Leijtens, T., Snaith, H.J.: Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342(6156), 341–344 (2013)CrossRef
15.
Zurück zum Zitat Mehdi, H., Matheron, M., Mhamdi, A., Manceau, M., Roux, C., Berson, S., Bouazizi, A.: Correlation between efficiency and device characterization in MAPbI 3-x Cl x standard perovskite solar cells. J. Mater. Sci.: Mater. Electron. 31(13), 10251–10259 (2020) Mehdi, H., Matheron, M., Mhamdi, A., Manceau, M., Roux, C., Berson, S., Bouazizi, A.: Correlation between efficiency and device characterization in MAPbI 3-x Cl x standard perovskite solar cells. J. Mater. Sci.: Mater. Electron. 31(13), 10251–10259 (2020)
16.
Zurück zum Zitat Burgelman, M., Nollet, P., Degrave, S.: Modelling polycrystalline semiconductor solar cells. Thin Solid Films 361, 527 (2000)CrossRef Burgelman, M., Nollet, P., Degrave, S.: Modelling polycrystalline semiconductor solar cells. Thin Solid Films 361, 527 (2000)CrossRef
17.
Zurück zum Zitat Burgelman, M., Decock, K., Khelifi, S., Abass, A.: Advanced electrical simulation of thin film solar cells. Thin Solid Films 535, 296 (2013)CrossRef Burgelman, M., Decock, K., Khelifi, S., Abass, A.: Advanced electrical simulation of thin film solar cells. Thin Solid Films 535, 296 (2013)CrossRef
18.
Zurück zum Zitat Hazeghi, F., Ghorashi, S.M.B.: Simulation of perovskite solar cells by using CuSCN as an inorganic hole-transport material. Mater. Res. Express 6(9), 095527 (2019)CrossRef Hazeghi, F., Ghorashi, S.M.B.: Simulation of perovskite solar cells by using CuSCN as an inorganic hole-transport material. Mater. Res. Express 6(9), 095527 (2019)CrossRef
19.
Zurück zum Zitat Walukiewicz, W.: Amphoteric native defects in semiconductors. Appl. Phys. Lett. 54(21), 2094–2096 (1989)CrossRef Walukiewicz, W.: Amphoteric native defects in semiconductors. Appl. Phys. Lett. 54(21), 2094–2096 (1989)CrossRef
20.
Zurück zum Zitat Bhattarai, S., Hossain, I., Maiti, M., Pandey, R., and Madan, J. (2023) Performance analysis and optimization of all-inorganic CsPbI3-based perovskite solar cell. Indian J. Phys. 1–9. Bhattarai, S., Hossain, I., Maiti, M., Pandey, R., and Madan, J. (2023) Performance analysis and optimization of all-inorganic CsPbI3-based perovskite solar cell. Indian J. Phys. 1–9.
21.
Zurück zum Zitat Jannat, F., Ahmed, S., Alim, M.A.: Performance analysis of cesium formamidinium lead mixed halide based perovskite solar cell with MoOx as hole transport material via SCAPS-1D. Optik 228, 166202 (2021)CrossRef Jannat, F., Ahmed, S., Alim, M.A.: Performance analysis of cesium formamidinium lead mixed halide based perovskite solar cell with MoOx as hole transport material via SCAPS-1D. Optik 228, 166202 (2021)CrossRef
22.
Zurück zum Zitat Ritu, Gagandeep, Kumar, R., Chand, F.: Performance enhancement in MA0.7FA0.3PbI3 based perovskite solar cell by gradient doping. Optik 274, 170558 (2023)CrossRef Ritu, Gagandeep, Kumar, R., Chand, F.: Performance enhancement in MA0.7FA0.3PbI3 based perovskite solar cell by gradient doping. Optik 274, 170558 (2023)CrossRef
23.
Zurück zum Zitat Chowdhury, M.S., Shahahmadi, S.A., Chelvanathan, P., Tiong, S.K., Amin, N., Techato, K.A., Suklueng, M.: Results in Physics 16, 102839 (2020)CrossRef Chowdhury, M.S., Shahahmadi, S.A., Chelvanathan, P., Tiong, S.K., Amin, N., Techato, K.A., Suklueng, M.: Results in Physics 16, 102839 (2020)CrossRef
24.
Zurück zum Zitat Islam, M., Jani, M., Rahman, S., Shorowordi, K.M., Nishat, S.S., Hodges, D., Ahmed, S.: Investigation of non-Pb all-perovskite 4-T mechanically stacked and 2-T monolithic tandem solar devices utilizing SCAPS simulation. SN Appl. Sci. 3(4), 1 (2021)CrossRef Islam, M., Jani, M., Rahman, S., Shorowordi, K.M., Nishat, S.S., Hodges, D., Ahmed, S.: Investigation of non-Pb all-perovskite 4-T mechanically stacked and 2-T monolithic tandem solar devices utilizing SCAPS simulation. SN Appl. Sci. 3(4), 1 (2021)CrossRef
25.
Zurück zum Zitat Oublal, E., Ait Abdelkadir, A., Sahal, M.: J. Nanopart. Res. 24(10), 1 (2022)CrossRef Oublal, E., Ait Abdelkadir, A., Sahal, M.: J. Nanopart. Res. 24(10), 1 (2022)CrossRef
26.
Zurück zum Zitat Yiğit Gezgin, S., Kiliç, H.Ş: The effect of Ag plasmonic nanoparticles on the efficiency of CZTS solar cell: an experimental investigation and numerical modelling. Indian J. Phys. 97(3), 779–796 (2023)CrossRef Yiğit Gezgin, S., Kiliç, H.Ş: The effect of Ag plasmonic nanoparticles on the efficiency of CZTS solar cell: an experimental investigation and numerical modelling. Indian J. Phys. 97(3), 779–796 (2023)CrossRef
27.
Zurück zum Zitat Raza, E., Ahmad, Z., Aziz, F., Asif, M., Ahmed, A., Riaz, K., Al-Thani, N.J.: Numerical simulation analysis towards the effect of charge transport layers electrical properties on cesium based ternary cation perovskite solar cells performance. Sol. Energy 225, 842 (2021)CrossRef Raza, E., Ahmad, Z., Aziz, F., Asif, M., Ahmed, A., Riaz, K., Al-Thani, N.J.: Numerical simulation analysis towards the effect of charge transport layers electrical properties on cesium based ternary cation perovskite solar cells performance. Sol. Energy 225, 842 (2021)CrossRef
28.
Zurück zum Zitat Ritu, G., Kumar, R., and Chand, F. Studies, 3, 4. Ritu, G., Kumar, R., and Chand, F. Studies3, 4.
29.
Zurück zum Zitat Abdelaziz, S., Zekry, A., Shaker, A., Abouelatta, M.: Investigating the performance of formamidinium tin-based perovskite solar cell by SCAPS device simulation. Opt. Mater. 101, 109738 (2020)CrossRef Abdelaziz, S., Zekry, A., Shaker, A., Abouelatta, M.: Investigating the performance of formamidinium tin-based perovskite solar cell by SCAPS device simulation. Opt. Mater. 101, 109738 (2020)CrossRef
30.
Zurück zum Zitat Tara, A., Bharti, V., Sharma, S., Gupta, R.: Device simulation of FASnI3 based perovskite solar cell with Zn (O0.3, S0.7) as electron transport layer using SCAPS-1D Opt. Material 119, 111362 (2021) Tara, A., Bharti, V., Sharma, S., Gupta, R.: Device simulation of FASnI3 based perovskite solar cell with Zn (O0.3, S0.7) as electron transport layer using SCAPS-1D Opt. Material 119, 111362 (2021)
31.
Zurück zum Zitat Lin, L., Li, P., Jiang, L., Kang, Z., Yan, Q., Xiong, H., Qiu, Y.: Boosting efficiency up to 25% for HTL-free carbon-based perovskite solar cells by gradient doping using SCAPS simulation. Sol. Energy 215, 328 (2021)CrossRef Lin, L., Li, P., Jiang, L., Kang, Z., Yan, Q., Xiong, H., Qiu, Y.: Boosting efficiency up to 25% for HTL-free carbon-based perovskite solar cells by gradient doping using SCAPS simulation. Sol. Energy 215, 328 (2021)CrossRef
32.
Zurück zum Zitat Mukherjee, I., Somay, S., Pandey, S.K.: Comprehensive device modeling and performance analysis of quantum dot-Perovskite solar cells. J. Electron. Mater. 51(4), 1524 (2022)CrossRef Mukherjee, I., Somay, S., Pandey, S.K.: Comprehensive device modeling and performance analysis of quantum dot-Perovskite solar cells. J. Electron. Mater. 51(4), 1524 (2022)CrossRef
33.
Zurück zum Zitat Gomard, G., Peretti, R., Drouard, E., Meng, X., Seassal, C.: Photonic crystals and optical mode engineering for thin film photovoltaics. Opt. Express 21(103), A515–A527 (2013)CrossRef Gomard, G., Peretti, R., Drouard, E., Meng, X., Seassal, C.: Photonic crystals and optical mode engineering for thin film photovoltaics. Opt. Express 21(103), A515–A527 (2013)CrossRef
34.
Zurück zum Zitat Aliaghayee, M.: Optimization of the perovskite solar cell design with layer thickness engineering for improving the photovoltaic response using SCAPS-1D. J. Electron. Mater. 52(4), 2475–2491 (2023)CrossRef Aliaghayee, M.: Optimization of the perovskite solar cell design with layer thickness engineering for improving the photovoltaic response using SCAPS-1D. J. Electron. Mater. 52(4), 2475–2491 (2023)CrossRef
35.
Zurück zum Zitat Rai, N., Rai, S., Singh, P.K., Lohia, P., Dwivedi, D.K.: Analysis of various ETL materials for an efficient perovskite solar cell by numerical simulation. J. Mater. Sci.: Mater. Electron. 31(19), 16269 (2020) Rai, N., Rai, S., Singh, P.K., Lohia, P., Dwivedi, D.K.: Analysis of various ETL materials for an efficient perovskite solar cell by numerical simulation. J. Mater. Sci.: Mater. Electron. 31(19), 16269 (2020)
Metadaten
Titel
Numerical simulation of a mixed-halide perovskite solar cell using doping gradient
verfasst von
Ritu
Gagandeep
Ramesh Kumar
Fakir Chand
Publikationsdatum
26.07.2023
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 5/2023
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-023-02085-x