Skip to main content
Erschienen in: Fluid Dynamics 4/2020

01.07.2020

Numerical Simulation of Flow around Rigid Rotor in Forward Flight

verfasst von: I. V. Abalakin, V. G. Bobkov, T. K. Kozubskaya, V. A. Vershkov, B. S. Kritsky, R. M. Mirgazov

Erschienen in: Fluid Dynamics | Ausgabe 4/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The study is devoted to the numerical simulation of flow around the rigid helicopter main rotor in forward flight based on the averaged Navier—Stokes equations in a noninertial reference frame. The calculations are performed using the in-house code NOISEtte, whose distinctive feature is the use of schemes with edge-based reconstruction of variables on unstructured mixed-element mesh, together with the commercial ANSYS CFX software package. The numerically obtained aerodynamic characteristics of the main rotor are compared with the data of physical experiment.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Here, the unstructured mixed-element mesh is a mesh consisting of the following elements: hexahedrons, triangular prisms, tetrahedrons, quadrangular pyramids.
 
Literatur
1.
Zurück zum Zitat I.V. Abalakin, V.A. Anikin, P.A. Bakhvalov, V.G. Bobkov, and T.K. Kozubskaya, “Numerical investigation of the aerodynamic and acoustical properties of a shrouded rotor,” Fluid Dynamics51(3), 419–433 (2016).MathSciNetCrossRef I.V. Abalakin, V.A. Anikin, P.A. Bakhvalov, V.G. Bobkov, and T.K. Kozubskaya, “Numerical investigation of the aerodynamic and acoustical properties of a shrouded rotor,” Fluid Dynamics51(3), 419–433 (2016).MathSciNetCrossRef
2.
Zurück zum Zitat A. Gorobets, “Parallel Algorithm of the NOISEtte Code for CFD and CAA Simulations,” Lobachevskii Journal of Mathematics, 2018, Vol. 39, No. 4, pp. 524–532. A. Gorobets, “Parallel Algorithm of the NOISEtte Code for CFD and CAA Simulations,” Lobachevskii Journal of Mathematics, 2018, Vol. 39, No. 4, pp. 524–532.
3.
Zurück zum Zitat S.A. Karabasov, “Using the hybrid method in modeling the noise of high-speed helicopter blades,” Mat. Model.18(2), 2–23 (2006). S.A. Karabasov, “Using the hybrid method in modeling the noise of high-speed helicopter blades,” Mat. Model.18(2), 2–23 (2006).
4.
Zurück zum Zitat V.F. Kopiev, V.A. Titarev, and I.V. Belyaev, “Development of a methodology for propeller noise calculations on high-performance computers,” TsAGI Sci. J. 45(3–4), 293–327 (2014). V.F. Kopiev, V.A. Titarev, and I.V. Belyaev, “Development of a methodology for propeller noise calculations on high-performance computers,” TsAGI Sci. J. 45(3–4), 293–327 (2014).
5.
Zurück zum Zitat Yu.M. Ignatkin and S.G. Konstantinov, “CFD investigation of the aerodynamic characteristics of the main helicopter rotor,” Trudy MAI, No. 57 (2012). Yu.M. Ignatkin and S.G. Konstantinov, “CFD investigation of the aerodynamic characteristics of the main helicopter rotor,” Trudy MAI, No. 57 (2012).
6.
Zurück zum Zitat A. Batrakov, L. Garipova, A. Kusyumov, S. Mikhailov, and G. Barakos, “Computational fluid dynamics modeling of helicopter fuselage drag,” J. Aircraft52(5), 1634–1643 (2015). https://doi.org/10.2514/1.C033019CrossRef A. Batrakov, L. Garipova, A. Kusyumov, S. Mikhailov, and G. Barakos, “Computational fluid dynamics modeling of helicopter fuselage drag,” J. Aircraft52(5), 1634–1643 (2015). https://doi.org/10.2514/1.C033019CrossRef
7.
Zurück zum Zitat L. Garipova, A. Batrakov, A. Kusyumov, S. Mikhaylov, and G. Barakos, “Aerodynamic and acoustic analysis of helicopter main rotor blade tips in hover,” Intern. J. Numer. Methods for Heat and Fluid Flow26(7), 2101–2118 (2016). https://doi.org/10.1108/HFF-08-2015-0348CrossRef L. Garipova, A. Batrakov, A. Kusyumov, S. Mikhaylov, and G. Barakos, “Aerodynamic and acoustic analysis of helicopter main rotor blade tips in hover,” Intern. J. Numer. Methods for Heat and Fluid Flow26(7), 2101–2118 (2016). https://doi.org/10.1108/HFF-08-2015-0348CrossRef
8.
Zurück zum Zitat V.F. Kopiev, M.Yu. Zaytsev, V.I. Vorontsov, S.A. Karabasov, and V.A. Anikin, “Helicopter noise in hover: computational modeling and experimental validation,” Acoust. Physics63(6), 686–698 (2017).ADSCrossRef V.F. Kopiev, M.Yu. Zaytsev, V.I. Vorontsov, S.A. Karabasov, and V.A. Anikin, “Helicopter noise in hover: computational modeling and experimental validation,” Acoust. Physics63(6), 686–698 (2017).ADSCrossRef
9.
Zurück zum Zitat I.V. Abalakin and T.K. Kozubskaya, “Quasi-one-dimensional edge-based reconstruction scheme for solving problems of aerodynamics and aeroacoustics on unstructured meshes,” Mat. Model. 25(8), 109–136 (2013).MathSciNetMATH I.V. Abalakin and T.K. Kozubskaya, “Quasi-one-dimensional edge-based reconstruction scheme for solving problems of aerodynamics and aeroacoustics on unstructured meshes,” Mat. Model. 25(8), 109–136 (2013).MathSciNetMATH
10.
Zurück zum Zitat P.A. Bakhvalov, “Quasi-one-dimensional reconstruction scheme on convex polygonal meshes for solving aeroacoustic problems,” Mat. Model. Computer Simulations6(2), 192–202 (2014).MathSciNetCrossRef P.A. Bakhvalov, “Quasi-one-dimensional reconstruction scheme on convex polygonal meshes for solving aeroacoustic problems,” Mat. Model. Computer Simulations6(2), 192–202 (2014).MathSciNetCrossRef
11.
Zurück zum Zitat I. Abalakin, P. Bakhvalov, and T. Kozubskaya. “Edge-based reconstruction schemes for prediction of near field flow region in complex aeroacoustics problems,” Int. J. Aeroacoust.13(3–4), 207–234 (2014). https://doi.org/10.1260/1475-472X.13.3-4.207CrossRef I. Abalakin, P. Bakhvalov, and T. Kozubskaya. “Edge-based reconstruction schemes for prediction of near field flow region in complex aeroacoustics problems,” Int. J. Aeroacoust.13(3–4), 207–234 (2014). https://doi.org/10.1260/1475-472X.13.3-4.207CrossRef
12.
Zurück zum Zitat I. Abalakin, P. Bakhvalov, and T. Kozubskaya, “Edge-based reconstruction schemes for unstructured tetrahedral meshes,” Intern. J. Numer. Meth. Fluids81(6), 331–356 (2016). https://doi.org/10.1002/fld.4187ADSMathSciNetCrossRef I. Abalakin, P. Bakhvalov, and T. Kozubskaya, “Edge-based reconstruction schemes for unstructured tetrahedral meshes,” Intern. J. Numer. Meth. Fluids81(6), 331–356 (2016). https://doi.org/10.1002/fld.4187ADSMathSciNetCrossRef
13.
Zurück zum Zitat L.S. Pavlov, “Pressure distribution in the sections of a rectangular wing (blade) in curvilinear motion in an incompressible medium,” Uch. Zap. TsAGI10(2), 104–108 (1979). L.S. Pavlov, “Pressure distribution in the sections of a rectangular wing (blade) in curvilinear motion in an incompressible medium,” Uch. Zap. TsAGI10(2), 104–108 (1979).
14.
Zurück zum Zitat W. Johnson, Helicopter Theory (Dover Publ., New York, 2013). W. Johnson, Helicopter Theory (Dover Publ., New York, 2013).
15.
Zurück zum Zitat P.R. Spalart and S.R. Allmaras, “A one-equation turbulence model for aerodynamic flows,” AIAA Paper No. 0439 (1992). https://doi.org/10.2514/6.1992-439 P.R. Spalart and S.R. Allmaras, “A one-equation turbulence model for aerodynamic flows,” AIAA Paper No. 0439 (1992). https://doi.org/10.2514/6.1992-439
16.
Zurück zum Zitat F.R. Menter, “Two-equation eddy-viscosity turbulence models for engineering applications,” AIAA J. 32(8), 1598–1605 (1994). https://doi.org/10.2514/3.12149ADSCrossRef F.R. Menter, “Two-equation eddy-viscosity turbulence models for engineering applications,” AIAA J. 32(8), 1598–1605 (1994). https://doi.org/10.2514/3.12149ADSCrossRef
17.
Zurück zum Zitat I. Belov and S. Isaev, Simulation of Turbulent Flows. A Textbook (Baltic State Techn. Univ., St. Petersburg, 2001) [in Russian]. I. Belov and S. Isaev, Simulation of Turbulent Flows. A Textbook (Baltic State Techn. Univ., St. Petersburg, 2001) [in Russian].
18.
Zurück zum Zitat D.C. Wilcox, Turbulence Modeling for CFD (DCW Industries, La Canada, Ca., 2006). D.C. Wilcox, Turbulence Modeling for CFD (DCW Industries, La Canada, Ca., 2006).
19.
Zurück zum Zitat H. Reichard, “Vollständige Darstellung der turbulenten Geschwindigkeitsverteilung in glatten Leitungen,” Zeitschrift Angew. Math. Mech. 31, 208–219 (1951).ADSCrossRef H. Reichard, “Vollständige Darstellung der turbulenten Geschwindigkeitsverteilung in glatten Leitungen,” Zeitschrift Angew. Math. Mech. 31, 208–219 (1951).ADSCrossRef
20.
Zurück zum Zitat Y. Saad, Iterative Methods for Sparse Linear Systems (Society for Industrial and Applied Mathematics, Philadelphia, 2003).CrossRef Y. Saad, Iterative Methods for Sparse Linear Systems (Society for Industrial and Applied Mathematics, Philadelphia, 2003).CrossRef
21.
Zurück zum Zitat ANSYS, Inc. ANSYS, 1970–2018. URL www.ansys.com. ANSYS, Inc. ANSYS, 1970–2018. URL www.ansys.com.
22.
Zurück zum Zitat R. Cucitore, M. Quadrio, and A. Baron, “On the effectiveness and limitations of local criteria for the identification of a vortex,” Europ. J. Mechanics – B/Fluids 18(2), 261–282 (1999). https://doi.org/10.1016/s0997-7546(99)80026-0ADSMathSciNetCrossRef R. Cucitore, M. Quadrio, and A. Baron, “On the effectiveness and limitations of local criteria for the identification of a vortex,” Europ. J. Mechanics – B/Fluids 18(2), 261–282 (1999). https://doi.org/10.1016/s0997-7546(99)80026-0ADSMathSciNetCrossRef
23.
Zurück zum Zitat Research Center Kurchatov Institute, URL http://computing.nrcki.ru/. Research Center Kurchatov Institute, URL http://​computing.​nrcki.​ru/​.​
Metadaten
Titel
Numerical Simulation of Flow around Rigid Rotor in Forward Flight
verfasst von
I. V. Abalakin
V. G. Bobkov
T. K. Kozubskaya
V. A. Vershkov
B. S. Kritsky
R. M. Mirgazov
Publikationsdatum
01.07.2020
Verlag
Pleiades Publishing
Erschienen in
Fluid Dynamics / Ausgabe 4/2020
Print ISSN: 0015-4628
Elektronische ISSN: 1573-8507
DOI
https://doi.org/10.1134/S0015462820040011

Weitere Artikel der Ausgabe 4/2020

Fluid Dynamics 4/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.