Skip to main content

2015 | OriginalPaper | Buchkapitel

29. Numerical Simulation of Heat Transfer to TiO2-Water Nanofluid Flow in a Double-Tube Counter Flow Heat Exchanger

verfasst von : C. S. Oon, H. Nordin, A. Al-Shamma’a, S. N. Kazi, A. Badarudin, B. T. Chew

Erschienen in: Progress in Clean Energy, Volume 1

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Recently, the means of improvement of heat transfer has been rapidly studied. One of the methods that enhance the heat transfer is by changing the heat exchanging fluids. The poor heat transfer coefficient of common fluids compared to the most solids becomes the primary obstacle to design high compactness and effectiveness of heat exchanger. The primary objective of this chapter is to conduct the study of the heat transfer between the water and nanofluid. Both of the fluids were flowed in the horizontal counter flow heat exchanger under the turbulent flow condition. The flow velocity of the fluids varied with Re between 4,000 and 18,000. Literature review states that the heat transfer coefficient of nanofluid is higher than the water by about 6–11 %. Heat transfer to the nanofluid and water is investigated using a computer fluid dynamics software. Ten percent heat transfer augmentation is observed utilizing nanofluid as heat exchanging fluid compared to water. The results also showed the enhancement of the Reynolds number increases the heat transfer to the nanofluid studied in this investigation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Versteeg HK, Malalasekera W (2007) An introduction to computational fluid dynamics. Pearson, Glasgow Versteeg HK, Malalasekera W (2007) An introduction to computational fluid dynamics. Pearson, Glasgow
2.
Zurück zum Zitat Armaly BF, Durst F, Pereira JCF, Schonung B (1983) Experimental and theoretical investigation of backward facing step flow. J Fluid Mech 127:473–496CrossRef Armaly BF, Durst F, Pereira JCF, Schonung B (1983) Experimental and theoretical investigation of backward facing step flow. J Fluid Mech 127:473–496CrossRef
3.
Zurück zum Zitat Bianco V, Chiacchio F, Manca O, Nardini S (2009) Numerical investigation of nanofluids forced convection in circular tube. Appl Therm Eng 29:3632–3642CrossRef Bianco V, Chiacchio F, Manca O, Nardini S (2009) Numerical investigation of nanofluids forced convection in circular tube. Appl Therm Eng 29:3632–3642CrossRef
4.
Zurück zum Zitat Aminossadati SM, Ghasemi B (2009) Natural convection cooling of a localised heat source at the bottom of a nanofluid-filled enclosure. Eur J Mech B Fluids 28:630–640CrossRefMATH Aminossadati SM, Ghasemi B (2009) Natural convection cooling of a localised heat source at the bottom of a nanofluid-filled enclosure. Eur J Mech B Fluids 28:630–640CrossRefMATH
5.
Zurück zum Zitat Oon CS et al. (2013) Numerical investigation of heat transfer to fully developed turbulent air flow in a concentric pipe. In: Fifth international conference on computational intelligence, modelling and simulation (CIMSim), pp 288–293 Oon CS et al. (2013) Numerical investigation of heat transfer to fully developed turbulent air flow in a concentric pipe. In: Fifth international conference on computational intelligence, modelling and simulation (CIMSim), pp 288–293
6.
Zurück zum Zitat Oon CS, Togun H, Kazi SN, Badarudin A, Sadeghinezhad E (2013) Computational simulation of heat transfer to separation fluid flow in an annular passage. Int Commun Heat Mass Transf 46:92–96CrossRef Oon CS, Togun H, Kazi SN, Badarudin A, Sadeghinezhad E (2013) Computational simulation of heat transfer to separation fluid flow in an annular passage. Int Commun Heat Mass Transf 46:92–96CrossRef
7.
Zurück zum Zitat Oon CS, Togun H, Kazi SN, Badarudin A, Zubir MNM, Sadeghinezhad E (2012) Numerical simulation of heat transfer to separation air flow in an annular pipe. Int Commun Heat Mass Transf 39:1176–1180CrossRef Oon CS, Togun H, Kazi SN, Badarudin A, Zubir MNM, Sadeghinezhad E (2012) Numerical simulation of heat transfer to separation air flow in an annular pipe. Int Commun Heat Mass Transf 39:1176–1180CrossRef
8.
Zurück zum Zitat Oon CS, Badarudin A, Kazi SN, Fadhli M (2014) Simulation of heat transfer to turbulent nanofluid flow in an annular passage. Adv Mater Res 925:625–629CrossRef Oon CS, Badarudin A, Kazi SN, Fadhli M (2014) Simulation of heat transfer to turbulent nanofluid flow in an annular passage. Adv Mater Res 925:625–629CrossRef
9.
Zurück zum Zitat Duangthongsuk W, Wongwises S (2009) Heat transfer enhancement and pressure drop characteristics of TiO2—water nanofluid in a double-tube counter flow heat exchanger. Int J Heat Mass Transf 52:2059–2067CrossRef Duangthongsuk W, Wongwises S (2009) Heat transfer enhancement and pressure drop characteristics of TiO2—water nanofluid in a double-tube counter flow heat exchanger. Int J Heat Mass Transf 52:2059–2067CrossRef
10.
Zurück zum Zitat Trisaksri V, Wongwises S (2007) Critical review of heat transfer characteristics of nanofluids. Renew Sustain Energy Rev 11:512–523CrossRef Trisaksri V, Wongwises S (2007) Critical review of heat transfer characteristics of nanofluids. Renew Sustain Energy Rev 11:512–523CrossRef
11.
Zurück zum Zitat Lee S, Choi SUS, Li S, Eastman JA (1999) Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Transf 121:280–289CrossRef Lee S, Choi SUS, Li S, Eastman JA (1999) Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Transf 121:280–289CrossRef
12.
Zurück zum Zitat Wen D, Ding Y (2004) Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. Int J Heat Mass Transf 47:5181–5188CrossRef Wen D, Ding Y (2004) Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. Int J Heat Mass Transf 47:5181–5188CrossRef
13.
Zurück zum Zitat Das SK, Putra N, Roetzel W (2003) Pool boiling characteristics of nano-fluids. Int J Heat Mass Transf 46:851–862CrossRef Das SK, Putra N, Roetzel W (2003) Pool boiling characteristics of nano-fluids. Int J Heat Mass Transf 46:851–862CrossRef
14.
Zurück zum Zitat Pak BC, Cho YI (1998) Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf 11:151–170CrossRef Pak BC, Cho YI (1998) Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf 11:151–170CrossRef
15.
Zurück zum Zitat Yang Y, Zhang ZG, Grulke EA, Anderson WB, Wu G (2005) Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow. Int J Heat Mass Transf 48:1107–1116CrossRef Yang Y, Zhang ZG, Grulke EA, Anderson WB, Wu G (2005) Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow. Int J Heat Mass Transf 48:1107–1116CrossRef
16.
Zurück zum Zitat Abu-Nada E (2008) Application of nanofluids for heat transfer enhancement of separated flows encountered in a backward facing step. Int J Heat Fluid Flow 29:242–249CrossRef Abu-Nada E (2008) Application of nanofluids for heat transfer enhancement of separated flows encountered in a backward facing step. Int J Heat Fluid Flow 29:242–249CrossRef
17.
Zurück zum Zitat Donald AD, Stephen LP (1999) Theory of multicomponent fluids, vol 135, Applied mathematical sciences. Springer, New York Donald AD, Stephen LP (1999) Theory of multicomponent fluids, vol 135, Applied mathematical sciences. Springer, New York
18.
Zurück zum Zitat Yu W, Choi SUS (2003) The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated maxwell model. J Nanoparticle Res 5:167–171CrossRef Yu W, Choi SUS (2003) The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated maxwell model. J Nanoparticle Res 5:167–171CrossRef
19.
Zurück zum Zitat Gnielinski V (1975) New equation for heat and mass transfer in the turbulent flow in pipes and channel. Forsch Ingenieurwes 41:8–16CrossRef Gnielinski V (1975) New equation for heat and mass transfer in the turbulent flow in pipes and channel. Forsch Ingenieurwes 41:8–16CrossRef
20.
Zurück zum Zitat Colebrook CF (1939) Turbulent flow in pipes with particular reference to the transition region between the smooth and rough pipe laws. J ICE 11:135–156CrossRef Colebrook CF (1939) Turbulent flow in pipes with particular reference to the transition region between the smooth and rough pipe laws. J ICE 11:135–156CrossRef
21.
Zurück zum Zitat Daungthongsuk W, Wongwises S (2007) A critical review of convective heat transfer of nanofluids. Renew Sustain Energy Rev 11:797–817CrossRef Daungthongsuk W, Wongwises S (2007) A critical review of convective heat transfer of nanofluids. Renew Sustain Energy Rev 11:797–817CrossRef
22.
Zurück zum Zitat Oon CS, Al-Shamma’a A, Kazi SN, Chew BT, Badarudin A, Sadeghinezhad E (2014) Simulation of heat transfer to separation air flow in a concentric pipe. Int Commun Heat Mass Transf 57:48–52CrossRef Oon CS, Al-Shamma’a A, Kazi SN, Chew BT, Badarudin A, Sadeghinezhad E (2014) Simulation of heat transfer to separation air flow in a concentric pipe. Int Commun Heat Mass Transf 57:48–52CrossRef
23.
Zurück zum Zitat Xuan Y, Li Q (2003) Investigation on convective heat transfer and flow features of nanofluids. J Heat Transf 125:151–155CrossRef Xuan Y, Li Q (2003) Investigation on convective heat transfer and flow features of nanofluids. J Heat Transf 125:151–155CrossRef
Metadaten
Titel
Numerical Simulation of Heat Transfer to TiO2-Water Nanofluid Flow in a Double-Tube Counter Flow Heat Exchanger
verfasst von
C. S. Oon
H. Nordin
A. Al-Shamma’a
S. N. Kazi
A. Badarudin
B. T. Chew
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-16709-1_29