Skip to main content
Erschienen in: Arabian Journal for Science and Engineering 9/2020

15.05.2020 | Research Article-Chemical Engineering

Numerical Simulation of Hydrodynamics in a Turbulent Contact Absorber: A Simplified Approach

verfasst von: Muhammad Imran, Atta Ullah, Syed Waqas Ahmad, Haji Ghulam Qutab, Madsar Hameed

Erschienen in: Arabian Journal for Science and Engineering | Ausgabe 9/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the current work, hydrodynamics of a turbulent contact absorber (TCA) was studied in terms of bed pressure drop and expanded bed height by adopting a simplified modeling approach. The study was carried out computationally using the Eulerian multifluid model in ANSYS Fluent® where the packing was treated as a granular material. In order to simplify the complex three-phase system, it was reduced to a two-phase configuration by considering the solid packing and liquid water as a single phase with appropriate modifications. Both the laminar and turbulent viscous models were tested to study the bed characteristics at different values of liquid and gas flow rates. The covered range of liquid velocity was 0.004–0.012 m/s and that of gas velocity was 1.8–3.6 m/s. It was found that laminar model was able to produce better results as compared to turbulent one. The simulation results for pressure drop across the bed agreed well with the published experimental data. However, for a fixed gas velocity with variable liquid holdup, the bed expansion displayed a reverse trend as compared to experiments. Hence, the current model can be used to predict bed pressure drop of TCA-type systems, but not the expanded bed height.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Cornelissen, J.T.; et al.: CFD modelling of a liquid–solid fluidized bed. Chem. Eng. Sci. 62(22), 6334–6348 (2007)CrossRef Cornelissen, J.T.; et al.: CFD modelling of a liquid–solid fluidized bed. Chem. Eng. Sci. 62(22), 6334–6348 (2007)CrossRef
2.
Zurück zum Zitat Kielback, A.: The development of floating-bed scrubbers. In: Chemical Engineering Progress Symposium Series (1959) Kielback, A.: The development of floating-bed scrubbers. In: Chemical Engineering Progress Symposium Series (1959)
3.
Zurück zum Zitat Oneill, B.; et al.: The hydrodynamics or gas–liquid contacting in towers with fluidised packings. Can. J. Chem. Eng. 50(5), 595–601 (1972)CrossRef Oneill, B.; et al.: The hydrodynamics or gas–liquid contacting in towers with fluidised packings. Can. J. Chem. Eng. 50(5), 595–601 (1972)CrossRef
4.
Zurück zum Zitat Muroyama, K.; Fan, L.S.: Fundamentals of gas–liquid–solid fluidization. AIChE J. 31(1), 1–34 (1985)CrossRef Muroyama, K.; Fan, L.S.: Fundamentals of gas–liquid–solid fluidization. AIChE J. 31(1), 1–34 (1985)CrossRef
5.
Zurück zum Zitat Reese, J.; et al.: Industrial applications of three-phase fluidization systems. In: Yang, W.C. (ed.) Fluidization, Solids Handling, and Processing, pp. 582–682. Elsevier, Amsterdam (1999)CrossRef Reese, J.; et al.: Industrial applications of three-phase fluidization systems. In: Yang, W.C. (ed.) Fluidization, Solids Handling, and Processing, pp. 582–682. Elsevier, Amsterdam (1999)CrossRef
6.
Zurück zum Zitat Gillani, S.S.J.; et al.: Counter-current three-phase fluidization in a turbulent contact absorber: a CFD simulation. Particuology 35, 51–67 (2017)CrossRef Gillani, S.S.J.; et al.: Counter-current three-phase fluidization in a turbulent contact absorber: a CFD simulation. Particuology 35, 51–67 (2017)CrossRef
7.
Zurück zum Zitat Yang, L.; et al.: CFD modeling on hydrodynamic characteristics of multiphase counter-current flow in a structured packed bed for post-combustion CO2 capture. Energies 11(11), 3103 (2018)CrossRef Yang, L.; et al.: CFD modeling on hydrodynamic characteristics of multiphase counter-current flow in a structured packed bed for post-combustion CO2 capture. Energies 11(11), 3103 (2018)CrossRef
8.
Zurück zum Zitat Pan, H.; et al.: CFD simulations of gas–liquid–solid flow in fluidized bed reactors—a review. Powder Technol. 299, 235–258 (2016)CrossRef Pan, H.; et al.: CFD simulations of gas–liquid–solid flow in fluidized bed reactors—a review. Powder Technol. 299, 235–258 (2016)CrossRef
9.
Zurück zum Zitat Hamidipour, M.; Chen, J.; Larachi, F.: CFD study on hydrodynamics in three-phase fluidized beds—application of turbulence models and experimental validation. Chem. Eng. Sci. 78, 167–180 (2012)CrossRef Hamidipour, M.; Chen, J.; Larachi, F.: CFD study on hydrodynamics in three-phase fluidized beds—application of turbulence models and experimental validation. Chem. Eng. Sci. 78, 167–180 (2012)CrossRef
10.
Zurück zum Zitat Panneerselvam, R.; Savithri, S.; Surender, G.: CFD simulation of hydrodynamics of gas–liquid–solid fluidised bed reactor. Chem. Eng. Sci. 64(6), 1119–1135 (2009)CrossRef Panneerselvam, R.; Savithri, S.; Surender, G.: CFD simulation of hydrodynamics of gas–liquid–solid fluidised bed reactor. Chem. Eng. Sci. 64(6), 1119–1135 (2009)CrossRef
11.
Zurück zum Zitat Papadikis, K.; Bridgwater, A.; Gu, S.: CFD modelling of the fast pyrolysis of biomass in fluidised bed reactors, part A: Eulerian computation of momentum transport in bubbling fluidised beds. Chem. Eng. Sci. 63(16), 4218–4227 (2008)CrossRef Papadikis, K.; Bridgwater, A.; Gu, S.: CFD modelling of the fast pyrolysis of biomass in fluidised bed reactors, part A: Eulerian computation of momentum transport in bubbling fluidised beds. Chem. Eng. Sci. 63(16), 4218–4227 (2008)CrossRef
12.
Zurück zum Zitat Zhang, N.; et al.: 3D CFD simulation of hydrodynamics of a 150 MWe circulating fluidized bed boiler. Chem. Eng. J. 162(2), 821–828 (2010)CrossRef Zhang, N.; et al.: 3D CFD simulation of hydrodynamics of a 150 MWe circulating fluidized bed boiler. Chem. Eng. J. 162(2), 821–828 (2010)CrossRef
13.
Zurück zum Zitat Bruce, A.; et al.: Modelling of hydrodynamics in a type I turbulent bed contactor. Chem. Eng. Sci. 61(6), 2089–2095 (2006)CrossRef Bruce, A.; et al.: Modelling of hydrodynamics in a type I turbulent bed contactor. Chem. Eng. Sci. 61(6), 2089–2095 (2006)CrossRef
14.
Zurück zum Zitat Van Baten, J.; Ellenberger, J.; Krishna, R.: Scale-up strategy for bubble column slurry reactors using CFD simulations. Catal. Today 79, 259–265 (2003)CrossRef Van Baten, J.; Ellenberger, J.; Krishna, R.: Scale-up strategy for bubble column slurry reactors using CFD simulations. Catal. Today 79, 259–265 (2003)CrossRef
15.
Zurück zum Zitat Rampure, M.R.; Buwa, V.V.; Ranade, V.V.: Modelling of gas–liquid/gas–liquid–solid flows in bubble columns: experiments and CFD simulations. Can. J. Chem. Eng. 81(3–4), 692–706 (2003) Rampure, M.R.; Buwa, V.V.; Ranade, V.V.: Modelling of gas–liquid/gas–liquid–solid flows in bubble columns: experiments and CFD simulations. Can. J. Chem. Eng. 81(3–4), 692–706 (2003)
16.
Zurück zum Zitat Sundaresan, S.: Modeling the hydrodynamics of multiphase flow reactors: current status and challenges. AIChE J. 46(6), 1102–1105 (2000)CrossRef Sundaresan, S.: Modeling the hydrodynamics of multiphase flow reactors: current status and challenges. AIChE J. 46(6), 1102–1105 (2000)CrossRef
17.
Zurück zum Zitat Reuge, N.; et al.: Multifluid Eulerian modeling of dense gas–solids fluidized bed hydrodynamics: influence of the dissipation parameters. Chem. Eng. Sci. 63(22), 5540–5551 (2008)CrossRef Reuge, N.; et al.: Multifluid Eulerian modeling of dense gas–solids fluidized bed hydrodynamics: influence of the dissipation parameters. Chem. Eng. Sci. 63(22), 5540–5551 (2008)CrossRef
18.
Zurück zum Zitat Jiradilok, V.; et al.: Kinetic theory based CFD simulation of turbulent fluidization of FCC particles in a riser. Chem. Eng. Sci. 61(17), 5544–5559 (2006)CrossRef Jiradilok, V.; et al.: Kinetic theory based CFD simulation of turbulent fluidization of FCC particles in a riser. Chem. Eng. Sci. 61(17), 5544–5559 (2006)CrossRef
19.
Zurück zum Zitat Cheng, Y.; Zhu, J.X.: CFD modelling and simulation of hydrodynamics in liquid-solid circulating fluidized beds. Can. J. Chem. Eng. 83(2), 177–185 (2005)CrossRef Cheng, Y.; Zhu, J.X.: CFD modelling and simulation of hydrodynamics in liquid-solid circulating fluidized beds. Can. J. Chem. Eng. 83(2), 177–185 (2005)CrossRef
20.
Zurück zum Zitat Zhang, K.; Brandani, S.: A CFD model for fluid dynamics in a gas-fluidised bed. Chem. Res. Chin. Univ. 20(4), 483–488 (2004)CrossRef Zhang, K.; Brandani, S.: A CFD model for fluid dynamics in a gas-fluidised bed. Chem. Res. Chin. Univ. 20(4), 483–488 (2004)CrossRef
21.
Zurück zum Zitat Huilin, L.; Gidaspow, D.: Hydrodynamics of binary fluidization in a riser: CFD simulation using two granular temperatures. Chem. Eng. Sci. 58(16), 3777–3792 (2003)CrossRef Huilin, L.; Gidaspow, D.: Hydrodynamics of binary fluidization in a riser: CFD simulation using two granular temperatures. Chem. Eng. Sci. 58(16), 3777–3792 (2003)CrossRef
22.
Zurück zum Zitat Haq, A.-U.: Mass Transfer in a Turbulent Contact Absorber. Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad (2012) Haq, A.-U.: Mass Transfer in a Turbulent Contact Absorber. Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad (2012)
23.
Zurück zum Zitat Haq, A.; et al.: Liquid holdup in a pilot-scale turbulent contact absorber—an experimental and comparative study. Chem. Eng. Technol. 33(12), 2059–2065 (2010)CrossRef Haq, A.; et al.: Liquid holdup in a pilot-scale turbulent contact absorber—an experimental and comparative study. Chem. Eng. Technol. 33(12), 2059–2065 (2010)CrossRef
24.
Zurück zum Zitat Kilic, M.; Ali, H.M.: Numerical investigation of combined effect of nanofluids and multiple impinging jets on heat transfer. Therm. Sci. 23(5 Part B), 3165–3173 (2019)CrossRef Kilic, M.; Ali, H.M.: Numerical investigation of combined effect of nanofluids and multiple impinging jets on heat transfer. Therm. Sci. 23(5 Part B), 3165–3173 (2019)CrossRef
25.
Zurück zum Zitat Lu, B.; Wang, W.; Li, J.: Searching for a mesh-independent sub-grid model for CFD simulation of gas–solid riser flows. Chem. Eng. Sci. 64(15), 3437–3447 (2009)CrossRef Lu, B.; Wang, W.; Li, J.: Searching for a mesh-independent sub-grid model for CFD simulation of gas–solid riser flows. Chem. Eng. Sci. 64(15), 3437–3447 (2009)CrossRef
Metadaten
Titel
Numerical Simulation of Hydrodynamics in a Turbulent Contact Absorber: A Simplified Approach
verfasst von
Muhammad Imran
Atta Ullah
Syed Waqas Ahmad
Haji Ghulam Qutab
Madsar Hameed
Publikationsdatum
15.05.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Arabian Journal for Science and Engineering / Ausgabe 9/2020
Print ISSN: 2193-567X
Elektronische ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-020-04605-4

Weitere Artikel der Ausgabe 9/2020

Arabian Journal for Science and Engineering 9/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.