Skip to main content
Erschienen in: Wireless Personal Communications 2/2018

05.01.2018

Numerical Simulation of Interior Turbulent Flow Regulation of Wet Submersible Motor

verfasst von: Xiaowen Zheng, Yanfeng Wang, Meng Jiang, Shibin Zhang

Erschienen in: Wireless Personal Communications | Ausgabe 2/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper investigates the regulation of the interior turbulent flow in a wet submersible motor using three-dimensional numerical simulation method based on ANSYS-CFD software. The model of the turbulent flow field between the rotor and the stator in the 850QS-3200 type wet submersible motor as an example was established to study the turbulent flow regulation of the axial-flow cooling water. The numerical investigation was carried out in wet submersible motor with different rotor outer surface roughness, i.e., 0.1, 0.3, 0.5, 0.7 and 0.9, with different rotor rotating speeds, i.e., 600, 1000, 1450, 1800, and 2200 r/min, and different flow rates of axial-flow cooling water, i.e., 0.5, 0.75, 1, 1.25 and 1.5 m/s. The distribution rules of the pressure, the absolute velocity and the velocity pathlines in the turbulent flow field were studied. The results show that these three factors have various different action mechanism and different degree of influence on the pressure distribution, absolute velocity distribution and velocity pathlines, which could provide a theoretical guide for the optimization of the rotor and stator system in wet submersible motor.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Vardy, A. E., & Brown, J. M. B. (2003). Transient turbulent friction in smooth pipe flows. Journal of Sound and Vibration, 259(5), 1011–1036.CrossRef Vardy, A. E., & Brown, J. M. B. (2003). Transient turbulent friction in smooth pipe flows. Journal of Sound and Vibration, 259(5), 1011–1036.CrossRef
2.
Zurück zum Zitat Lu, J., Ding, J., Yang, J., et al. (2014). Steady dynamical behaviors of novel viscous pump with groove under the rotor. International Journal of Heat and Mass Transfer, 73, 170–176.CrossRef Lu, J., Ding, J., Yang, J., et al. (2014). Steady dynamical behaviors of novel viscous pump with groove under the rotor. International Journal of Heat and Mass Transfer, 73, 170–176.CrossRef
3.
Zurück zum Zitat Wiggert, D. C., & Tijsseling, A. S. (2001). Fluid transients and fluid-structure interaction in flexible liquid-filled piping. Applied Mechanics Reviews, 54(5), 455–481.CrossRef Wiggert, D. C., & Tijsseling, A. S. (2001). Fluid transients and fluid-structure interaction in flexible liquid-filled piping. Applied Mechanics Reviews, 54(5), 455–481.CrossRef
4.
Zurück zum Zitat Issa, R. I., & Kempf, M. H. W. (2003). Simulation of slug flow in horizontal and nearly horizontal pipes with the two-fluid model. International Journal of Multiphase Flow, 29(1), 69–95.CrossRefMATH Issa, R. I., & Kempf, M. H. W. (2003). Simulation of slug flow in horizontal and nearly horizontal pipes with the two-fluid model. International Journal of Multiphase Flow, 29(1), 69–95.CrossRefMATH
5.
Zurück zum Zitat Adebayo, D. S., & Rona, A. (2017). Numerical investigation of the three-dimensional pressure distribution in Taylor Couette flow. Journal of Fluids Engineering, 139(11), 111201.CrossRef Adebayo, D. S., & Rona, A. (2017). Numerical investigation of the three-dimensional pressure distribution in Taylor Couette flow. Journal of Fluids Engineering, 139(11), 111201.CrossRef
6.
Zurück zum Zitat Rivero-Rodriguez, J., & Pérez-Saborid, M. (2015). Numerical investigation of the influence of gravity on flutter of cantilevered pipes conveying fluid. Journal of Fluids and Structures, 55, 106–121.CrossRef Rivero-Rodriguez, J., & Pérez-Saborid, M. (2015). Numerical investigation of the influence of gravity on flutter of cantilevered pipes conveying fluid. Journal of Fluids and Structures, 55, 106–121.CrossRef
7.
Zurück zum Zitat Boye, T. G. E., Nwaoha, T. C., Olusegun, S. D., et al. (2011). A validation method of computational fluid dynamics (CFD) simulation against experimental data of transient flow in pipes system. Nuclear Technology, 176(2), 238–259.CrossRef Boye, T. G. E., Nwaoha, T. C., Olusegun, S. D., et al. (2011). A validation method of computational fluid dynamics (CFD) simulation against experimental data of transient flow in pipes system. Nuclear Technology, 176(2), 238–259.CrossRef
8.
Zurück zum Zitat Lee, K., & Yang, K. S. (2017). Large Eddy simulation of turbulent flow past a circular cylinder in the subcritical and critical regimes. Journal of Mechanical Science and Technology, 31(4), 1729–1737.CrossRef Lee, K., & Yang, K. S. (2017). Large Eddy simulation of turbulent flow past a circular cylinder in the subcritical and critical regimes. Journal of Mechanical Science and Technology, 31(4), 1729–1737.CrossRef
9.
Zurück zum Zitat Sengupta, T. K., & Gullapalli, A. (2016). Enstrophy-based proper orthogonal decomposition of flow past rotating cylinder at super-critical rotating rate. Physics of Fluids, 28(11), 107–114.CrossRef Sengupta, T. K., & Gullapalli, A. (2016). Enstrophy-based proper orthogonal decomposition of flow past rotating cylinder at super-critical rotating rate. Physics of Fluids, 28(11), 107–114.CrossRef
11.
Zurück zum Zitat Bourguet, R., & Jacono, D. L. (2014). Flow-induced vibrations of a rotating cylinder. Journal of Fluid Mechanics, 740, 342–380.CrossRefMATH Bourguet, R., & Jacono, D. L. (2014). Flow-induced vibrations of a rotating cylinder. Journal of Fluid Mechanics, 740, 342–380.CrossRefMATH
12.
Zurück zum Zitat Rao, A., Radi, A., Leontini, J. S., et al. (2015). A review of rotating cylinder wake transitions. Journal of Fluids and Structures, 53, 2–14.CrossRef Rao, A., Radi, A., Leontini, J. S., et al. (2015). A review of rotating cylinder wake transitions. Journal of Fluids and Structures, 53, 2–14.CrossRef
13.
Zurück zum Zitat Lu, L., Liu, M., Teng, B., et al. (2014). Numerical investigation of fluid flow past circular cylinder with multiple control rods at low Reynolds number. Journal of Fluids and Structures, 48, 235–259.CrossRef Lu, L., Liu, M., Teng, B., et al. (2014). Numerical investigation of fluid flow past circular cylinder with multiple control rods at low Reynolds number. Journal of Fluids and Structures, 48, 235–259.CrossRef
14.
Zurück zum Zitat Cheng, M., & Luo, L. S. (2007). Characteristics of two-dimensional flow around a rotating circular cylinder near a plane wall. Physics of Fluids, 19(6), 063601.CrossRefMATH Cheng, M., & Luo, L. S. (2007). Characteristics of two-dimensional flow around a rotating circular cylinder near a plane wall. Physics of Fluids, 19(6), 063601.CrossRefMATH
15.
Zurück zum Zitat Karabelas, S. J. (2010). Large eddy simulation of high-Reynolds number flow past a rotating cylinder. International Journal of Heat and Fluid Flow, 31(4), 518–527.CrossRef Karabelas, S. J. (2010). Large eddy simulation of high-Reynolds number flow past a rotating cylinder. International Journal of Heat and Fluid Flow, 31(4), 518–527.CrossRef
16.
Zurück zum Zitat Pralits, J. O., Brandt, L., & Giannetti, F. (2010). Instability and sensitivity of the flow around a rotating circular cylinder. Journal of Fluid Mechanics, 650, 513–536.MathSciNetCrossRefMATH Pralits, J. O., Brandt, L., & Giannetti, F. (2010). Instability and sensitivity of the flow around a rotating circular cylinder. Journal of Fluid Mechanics, 650, 513–536.MathSciNetCrossRefMATH
17.
Zurück zum Zitat Kumar, S., Cantu, C., & Gonzalez, B. (2011). Flow past a rotating cylinder at low and high rotation rates. Journal of Fluids Engineering, 133(4), 041201.CrossRef Kumar, S., Cantu, C., & Gonzalez, B. (2011). Flow past a rotating cylinder at low and high rotation rates. Journal of Fluids Engineering, 133(4), 041201.CrossRef
18.
Zurück zum Zitat Bao, X., Sheng, H., Shan, L., et al. (2013). Analysis of rotor 3D temperature field for high-voltage wet submersible motor. Large Electric Machine and Hydraulic Turbine, 1, 50–54. Bao, X., Sheng, H., Shan, L., et al. (2013). Analysis of rotor 3D temperature field for high-voltage wet submersible motor. Large Electric Machine and Hydraulic Turbine, 1, 50–54.
19.
Zurück zum Zitat Carrión, M., Steijl, R., Woodgate, M., et al. (2015). Computational fluid dynamics analysis of the wake behind the MEXICO rotor in axial flow conditions. Wind Energy, 18(6), 1023–1045.CrossRef Carrión, M., Steijl, R., Woodgate, M., et al. (2015). Computational fluid dynamics analysis of the wake behind the MEXICO rotor in axial flow conditions. Wind Energy, 18(6), 1023–1045.CrossRef
20.
Zurück zum Zitat Selimefendigil, F., & Öztop, H. F. (2014). Effect of a rotating cylinder in forced convection of ferrofluid over a backward facing step. International Journal of Heat and Mass Transfer, 71, 142–148.CrossRef Selimefendigil, F., & Öztop, H. F. (2014). Effect of a rotating cylinder in forced convection of ferrofluid over a backward facing step. International Journal of Heat and Mass Transfer, 71, 142–148.CrossRef
21.
Zurück zum Zitat Sen, S., De Nayer, G., & Breuer, M. (2016). A fast and robust hybrid method for block-structured mesh deformation with emphasis on FSI-LES applications. International Journal for Numerical Methods in Engineering, 111(3), 273–300.MathSciNetCrossRef Sen, S., De Nayer, G., & Breuer, M. (2016). A fast and robust hybrid method for block-structured mesh deformation with emphasis on FSI-LES applications. International Journal for Numerical Methods in Engineering, 111(3), 273–300.MathSciNetCrossRef
22.
Zurück zum Zitat Ljungskog, E., Sebben, S., Broniewicz, A., et al. (2017). A parametric study on the influence of boundary conditions on the longitudinal pressure gradient in CFD simulations of an automotive wind tunnel. Journal of Mechanical Science and Technology, 31(6), 2821–2827.CrossRef Ljungskog, E., Sebben, S., Broniewicz, A., et al. (2017). A parametric study on the influence of boundary conditions on the longitudinal pressure gradient in CFD simulations of an automotive wind tunnel. Journal of Mechanical Science and Technology, 31(6), 2821–2827.CrossRef
23.
Zurück zum Zitat Mathur, A., Srivastava, A., Mathur, J., et al. (2015). Transient effect of soil thermal diffusivity on performance of EATHE system. Energy Reports, 1, 17–21.CrossRef Mathur, A., Srivastava, A., Mathur, J., et al. (2015). Transient effect of soil thermal diffusivity on performance of EATHE system. Energy Reports, 1, 17–21.CrossRef
24.
Zurück zum Zitat Bao, X. H., & Sheng, H. J. (2013). Analysis of water friction loss and calculation of rotor 3D temperature field for wet submersible motor. Applied Mechanics and Materials, 325, 437–440.CrossRef Bao, X. H., & Sheng, H. J. (2013). Analysis of water friction loss and calculation of rotor 3D temperature field for wet submersible motor. Applied Mechanics and Materials, 325, 437–440.CrossRef
25.
Zurück zum Zitat Ding, H., Visser, F. C., Jiang, Y., et al. (2011). Demonstration and validation of a 3D CFD simulation tool predicting pump performance and cavitation for industrial applications. Journal of Fluids Engineering, 133(1), 011101.CrossRef Ding, H., Visser, F. C., Jiang, Y., et al. (2011). Demonstration and validation of a 3D CFD simulation tool predicting pump performance and cavitation for industrial applications. Journal of Fluids Engineering, 133(1), 011101.CrossRef
26.
Zurück zum Zitat Lei, T., Shu-Liang, C., Yu-Ming, W., et al. (2012). Numerical simulation of cavitation in a centrifugal pump at low flow rate. Chinese Physics Letters, 29(1), 014702.CrossRef Lei, T., Shu-Liang, C., Yu-Ming, W., et al. (2012). Numerical simulation of cavitation in a centrifugal pump at low flow rate. Chinese Physics Letters, 29(1), 014702.CrossRef
Metadaten
Titel
Numerical Simulation of Interior Turbulent Flow Regulation of Wet Submersible Motor
verfasst von
Xiaowen Zheng
Yanfeng Wang
Meng Jiang
Shibin Zhang
Publikationsdatum
05.01.2018
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 2/2018
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-017-5204-1

Weitere Artikel der Ausgabe 2/2018

Wireless Personal Communications 2/2018 Zur Ausgabe

Neuer Inhalt