Skip to main content

2018 | OriginalPaper | Buchkapitel

Numerical Simulation of Partially Covered Hartmann Whistle in a Sonic-Underexpanded Jet

verfasst von : Arnab Samanta, S. Narayanan, Ashish Narayan, Shailesh Kumar Jha

Erschienen in: Applications of Fluid Dynamics

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The current study provides numerical investigation into the use of “Hartmann whistle” as an effective passive flow control device by covering the major area between the nozzle exit and cavity inlet using a cylindrical shield. The passive control is accomplished by allowing the pulsating jet to exit through two small openings in the shield so that it can be utilized for various flow control applications such as mixing enhancement, drag reduction, noise mitigation. The current study numerically investigates the effect of partially covered cylindrical shield on the shock as well as regurgitant oscillation characteristics of a Hartmann whistle when the pulsating jet exits through the two small openings of the cylindrical shield. The relevant parameters that modify the flow/shock oscillations of the Hartmann whistle are the cavity standoff distance, nozzle pressure ratio, cavity length, cavity shield, etc. The studies were performed for various standoff distances values of 10, 20, and 30 mm to demonstrate the role of standoff distance in effective flow control. The modifications in the shock as well as regurgitant oscillation features of partially covered Hartmann whistles are systematically compared using transient velocity vectors, Mach number contours, etc. for various standoff distances. The velocity vectors indicate flow diversion features near the cavity mouth as well as inflow and outflow jet regurgitant phases. The Mach contours of partially shielded Hartmann whistles indicate shock structures, zones of flow deceleration and re-acceleration. It also clearly demonstrates that the resonant oscillations are primarily driven by jet regurgitance at smaller standoff distances, but at higher standoff distances they are primarily driven by the fluid column oscillations in the shock-cells, shield as well as in the cavity zones. Thus, the current study reveals that the standoff distance is a crucial parameter that controls the strength of shock, regurgitant as well as fluid column oscillations in a partially covered Hartmann whistle in order to achieve an effectual flow control.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Chang SM, Lee S (2001) On the jet regurgitant mode of a resonant tube. J Sound Vibr 246(4):567–581 Chang SM, Lee S (2001) On the jet regurgitant mode of a resonant tube. J Sound Vibr 246(4):567–581
Zurück zum Zitat Edin M, Narayanan S, Abdul Jaleel H (2015) Numerical simulation of jet flow impinging on a shielded Hartmann whistle. Int J Aeronaut Space Sci 16(2):123–136 Edin M, Narayanan S, Abdul Jaleel H (2015) Numerical simulation of jet flow impinging on a shielded Hartmann whistle. Int J Aeronaut Space Sci 16(2):123–136
Zurück zum Zitat Gravitt JC (1959) Frequency response of an acoustic air-jet generator. J Acoust Soc Am 31(11):1516–1518CrossRef Gravitt JC (1959) Frequency response of an acoustic air-jet generator. J Acoust Soc Am 31(11):1516–1518CrossRef
Zurück zum Zitat Iwamoto J (1990) Experimental study of flow oscillation in a rectangular jet driven tube. Trans ASME J Fluids Eng 112(1):23–27CrossRef Iwamoto J (1990) Experimental study of flow oscillation in a rectangular jet driven tube. Trans ASME J Fluids Eng 112(1):23–27CrossRef
Zurück zum Zitat Spalart PR, Allmaras SR (1992) A one-equation turbulence model for aerodynamic flows, American Institute of Aeronautics and Astronautics, AIAA-92-0439 Spalart PR, Allmaras SR (1992) A one-equation turbulence model for aerodynamic flows, American Institute of Aeronautics and Astronautics, AIAA-92-0439
Zurück zum Zitat Tam CKW (1995) Jet noise generated by large-scale coherent motion. In: Hubbard HH (ed) Aeroacoustics of flight vehicles, theory and practice, vol 1. Acoustical Society of America, Melville, p 1095 Tam CKW (1995) Jet noise generated by large-scale coherent motion. In: Hubbard HH (ed) Aeroacoustics of flight vehicles, theory and practice, vol 1. Acoustical Society of America, Melville, p 1095
Zurück zum Zitat Tam CKW, Tanna HK (1982) Shock associated noise of supersonic jets from convergent-divergent nozzles. J Sound Vib 81:337–358CrossRefMATH Tam CKW, Tanna HK (1982) Shock associated noise of supersonic jets from convergent-divergent nozzles. J Sound Vib 81:337–358CrossRefMATH
Metadaten
Titel
Numerical Simulation of Partially Covered Hartmann Whistle in a Sonic-Underexpanded Jet
verfasst von
Arnab Samanta
S. Narayanan
Ashish Narayan
Shailesh Kumar Jha
Copyright-Jahr
2018
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-5329-0_15

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.