Skip to main content

2006 | OriginalPaper | Buchkapitel

Numerical Simulation of Rubber Curing Process with Application to Bladders Manufacture

verfasst von : Paulo Porta, Carlos Vega

Erschienen in: III European Conference on Computational Mechanics

Verlag: Springer Netherlands

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

A large number of polymer products are formed into their final shape by polymerization in

situ

. In particular, mold curing process is the final step in many rubber products manufacturing and determines both the quality of the resulting product as well as productions costs. During this process, important changes in the mechanical properties -e.g. viscosity and modulus- take place, changes which are generally hard to be experimentally characterised. In view of this, a mathematical model is proposed for rubber vulcanisation molding, its strategical value being two fold: from production standpoint, its ability to predict optimal production parameters -the optimal curing time being the most important- and from quality assessment perspective, its capacity of predicting molded part properties.

Following the literature -see, e.g. [

1

]- the mathematical model is built from general mass-energy conservation principles. A series of plausible hypothesis are made in order to simplify the model, which results in a combination of i) the unsteady Fourier’s heat conduction equation -(1)- with a distributed internal heat source, resulting from the reaction -(2), ii) the reaction rate equation -(3)- and iii) closure constitutive equations, for the kinetic constants of the process, namely K

$$ _C^\gamma $$

and

t

inc

:

1

$$ \frac{{\partial \Theta }} {{\partial t}} = div\left( {k \cdot grad\Theta } \right) + \frac{{q'}} {{\rho c_p }}in \Omega for t > 0 $$

2

$$ q' = H_r \frac{{dC}} {{dt}} $$

3

$$ \frac{{dC}} {{dt}} = K_C^{\left( \gamma \right)} \left( {1 - C} \right)^\gamma for t > t_{inc} $$

for

t

>

t

inc

An algorithm is proposed to solve this coupled system. A coupled ODE-implicit in time finite element approximation is proposed and implemented under ALBERTA ([

2

]). After calibration of the computational model, the complete temperature and cross-links concentration is obtained for the typical bladder geometry. Performance results as well as a short discussion on error estimator behaviour are also presented.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Metadaten
Titel
Numerical Simulation of Rubber Curing Process with Application to Bladders Manufacture
verfasst von
Paulo Porta
Carlos Vega
Copyright-Jahr
2006
Verlag
Springer Netherlands
DOI
https://doi.org/10.1007/1-4020-5370-3_98

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.