Skip to main content
Erschienen in: Journal of Iron and Steel Research International 5/2021

25.02.2021 | Original Paper

Numerical simulation of slag layer and its distribution on hot surface of copper stave based on ANSYS birth-death element technology

verfasst von: Quan Shi, Jue Tang, Man-sheng Chu

Erschienen in: Journal of Iron and Steel Research International | Ausgabe 5/2021

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The core of the long-life copper stave was to ensure the stability of the slag layer, and the uniform distribution of the slag layer was beneficial to restrict the generation of the overthick slag layer. A novel model for calculating the thickness and distribution of the slag layer in the part of copper stave was established based on the finite element theory through the ANSYS birth-death element technology. The distribution and thickness of the slag layer on the hot surface of copper stave were calculated and analyzed when the gas temperature and slag properties tended to be changed, which was applied to characterize the slag-hanging capability of copper stave with the changes of furnace conditions. It was shown that the thickness of hot surface slag layer in the part of copper stave decreased obviously while the temperature of stave body raised rapidly with increasing gas temperature. When the gas temperature was 1400 °C, the inlaid slag layer was gradually melted, and the maximum temperature of the stave body was closed to 120 °C. The change of gas temperature was very sensitive to the adherent dross capability of copper stave which would be enhanced by the promotion of slag-hanging temperature. However, when the slag-hanging temperature was 1150 °C and the gas temperature was lower than 1250 °C, the overthick slag layer was easily formed on the hot surface of the copper stave, and its stability was poor. The improvement in the thermal conductivity of slag could be conducive to the formation of the uniform and stable slag layer on the hot surface of copper stave, especially in the dovetail groove. When the thermal conductivity of the slag was greater than 1.8 W m−2 °C−1, the inlaid slag layer in the dovetail groove was not melted, although the gas temperature reached 1500 °C.
Literatur
[1]
Zurück zum Zitat S. Manmohan, V. Sankalp, Int. J. Inventive Eng. Sci. 2 (2014) 10–16. S. Manmohan, V. Sankalp, Int. J. Inventive Eng. Sci. 2 (2014) 10–16.
[2]
Zurück zum Zitat I.F. Kurunov, V.N. Loginov, D.N. Tikhonov, Metallurgist 50 (2006) 605–613.CrossRef I.F. Kurunov, V.N. Loginov, D.N. Tikhonov, Metallurgist 50 (2006) 605–613.CrossRef
[3]
[4]
Zurück zum Zitat Y.L. Li, S.S. Cheng, C. Chen, J. Iron Steel Res. Int. 22 (2015) 382–390.CrossRef Y.L. Li, S.S. Cheng, C. Chen, J. Iron Steel Res. Int. 22 (2015) 382–390.CrossRef
[5]
Zurück zum Zitat L.J. Wu, X. Xu, W.G. Zhou, Y.L. Su, X.J. Li, Int. J. Heat Mass Transfer 51 (2008) 2824–2833.CrossRef L.J. Wu, X. Xu, W.G. Zhou, Y.L. Su, X.J. Li, Int. J. Heat Mass Transfer 51 (2008) 2824–2833.CrossRef
[6]
Zurück zum Zitat A. Kumar, S.N. Bansal, R. Chandraker, Mater. Phys. Mech. 15 (2012) 46–65. A. Kumar, S.N. Bansal, R. Chandraker, Mater. Phys. Mech. 15 (2012) 46–65.
[7]
Zurück zum Zitat R. Hathaway, K.S. Nanavati, D.H. Wakelin, Ironmaking Conf. Proc. 58 (1999) 35–46. R. Hathaway, K.S. Nanavati, D.H. Wakelin, Ironmaking Conf. Proc. 58 (1999) 35–46.
[8]
Zurück zum Zitat K.X. Jiao, J.L. Zhang, Z.J. Liu, Y. Deng, C.L. Chen, J. Iron Steel Res. Int. 25 (2018) 1010–1016.CrossRef K.X. Jiao, J.L. Zhang, Z.J. Liu, Y. Deng, C.L. Chen, J. Iron Steel Res. Int. 25 (2018) 1010–1016.CrossRef
[9]
[10]
Zurück zum Zitat P. Heinrich, J. Buchwalder, in: ISSTech 2003 Conference Proceedings, ISS, Warrendale, PA, USA, 2003, pp. 1091–1102. P. Heinrich, J. Buchwalder, in: ISSTech 2003 Conference Proceedings, ISS, Warrendale, PA, USA, 2003, pp. 1091–1102.
[11]
Zurück zum Zitat F.G. Li, J.L. Zhang, L. Wei, H.B. Zuo, Y.J. Duan, J.L. Jia, in: National Technical Seminar on Blast Furnace Longevity and High Wind Temperature, The Chinese Society for Metals, Beijing, China, 2012, pp. 46–54. F.G. Li, J.L. Zhang, L. Wei, H.B. Zuo, Y.J. Duan, J.L. Jia, in: National Technical Seminar on Blast Furnace Longevity and High Wind Temperature, The Chinese Society for Metals, Beijing, China, 2012, pp. 46–54.
[12]
Zurück zum Zitat Y.W. Huan, L.P. Lei, G. Fang, P. Zeng, J. Xu, Z.P. Zou, Metall. Equip. (2009) No. 3, 45–49. Y.W. Huan, L.P. Lei, G. Fang, P. Zeng, J. Xu, Z.P. Zou, Metall. Equip. (2009) No. 3, 45–49.
[13]
Zurück zum Zitat G. Cegna, O. Lingiardi, R. Musante, in: AISTech-Iron and Steel Technology Conf. Proc., Association for Iron and Steel Technology, Indiana, USA, 2014, pp. 683–694. G. Cegna, O. Lingiardi, R. Musante, in: AISTech-Iron and Steel Technology Conf. Proc., Association for Iron and Steel Technology, Indiana, USA, 2014, pp. 683–694.
[15]
[16]
Zurück zum Zitat Q. Liu, P. Zhang, S.S. Cheng, P.J. Niu, D.D. Liu, Int. J. Heat Mass Transfer 103 (2016) 341–348.CrossRef Q. Liu, P. Zhang, S.S. Cheng, P.J. Niu, D.D. Liu, Int. J. Heat Mass Transfer 103 (2016) 341–348.CrossRef
[17]
Zurück zum Zitat L. Qian, S.S. Cheng, J. Univ. Sci. Technol. Beijing 28 (2006) 1052–1057. L. Qian, S.S. Cheng, J. Univ. Sci. Technol. Beijing 28 (2006) 1052–1057.
[18]
Zurück zum Zitat S.S. Cheng, L. Qian, H.B. Zhao, J. Iron Steel Res. Int. 14 (2007) No. 4, 1–5.CrossRef S.S. Cheng, L. Qian, H.B. Zhao, J. Iron Steel Res. Int. 14 (2007) No. 4, 1–5.CrossRef
[19]
Zurück zum Zitat T. Wu, S.S. Cheng, Iron and Steel 46 (2011) No. 10, 11–15. T. Wu, S.S. Cheng, Iron and Steel 46 (2011) No. 10, 11–15.
[20]
Zurück zum Zitat T. Wu, S.S. Cheng, Ironmaking 30 (2011) No. 5, 26–30. T. Wu, S.S. Cheng, Ironmaking 30 (2011) No. 5, 26–30.
[21]
[22]
Zurück zum Zitat S.W. Choi, D. Kim, Rev. Prog. Quart. Noudestr. 1430 (2012) 1715–1721. S.W. Choi, D. Kim, Rev. Prog. Quart. Noudestr. 1430 (2012) 1715–1721.
[23]
[24]
Zurück zum Zitat C.P. Yeh, C.K. Ho, R.J. Yang, Int. Commun. Heat Mass Transfer 39 (2012) 58–65.CrossRef C.P. Yeh, C.K. Ho, R.J. Yang, Int. Commun. Heat Mass Transfer 39 (2012) 58–65.CrossRef
[25]
Zurück zum Zitat F.G. Li, J.L. Zhang, Chin. J. Eng. 38 (2016) 546–554. F.G. Li, J.L. Zhang, Chin. J. Eng. 38 (2016) 546–554.
[26]
Zurück zum Zitat S.S. Cheng, T.J. Yang, W.G. Yang, Q. Quan, Q.C. Wu, Iron and Steel 36 (2001) No. 2, 8–11. S.S. Cheng, T.J. Yang, W.G. Yang, Q. Quan, Q.C. Wu, Iron and Steel 36 (2001) No. 2, 8–11.
[27]
Zurück zum Zitat J.H. Cui, Y.F. Sun, R.B. Yu, Y.M. Gao, Y. Zhang, R. Liu, C.B. Sha, Foundry Technology 27 (2006) 851–854. J.H. Cui, Y.F. Sun, R.B. Yu, Y.M. Gao, Y. Zhang, R. Liu, C.B. Sha, Foundry Technology 27 (2006) 851–854.
[28]
Zurück zum Zitat X.L. Wang, Questions and answers on blast furnace production knowledge, 3rd ed., Metallurgical Industry Press, Beijing, China, 2013. X.L. Wang, Questions and answers on blast furnace production knowledge, 3rd ed., Metallurgical Industry Press, Beijing, China, 2013.
Metadaten
Titel
Numerical simulation of slag layer and its distribution on hot surface of copper stave based on ANSYS birth-death element technology
verfasst von
Quan Shi
Jue Tang
Man-sheng Chu
Publikationsdatum
25.02.2021
Verlag
Springer Singapore
Erschienen in
Journal of Iron and Steel Research International / Ausgabe 5/2021
Print ISSN: 1006-706X
Elektronische ISSN: 2210-3988
DOI
https://doi.org/10.1007/s42243-021-00559-5

Weitere Artikel der Ausgabe 5/2021

Journal of Iron and Steel Research International 5/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.