Skip to main content
Erschienen in: Rock Mechanics and Rock Engineering 5/2014

01.09.2014 | Original Paper

Numerical Simulation of the Rock SHPB Test with a Special Shape Striker Based on the Discrete Element Method

verfasst von: Xibing Li, Yang Zou, Zilong Zhou

Erschienen in: Rock Mechanics and Rock Engineering | Ausgabe 5/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A split Hopkinson pressure bar (SHPB) system with a special shape striker has been suggested as the test method by the International Society for Rock Mechanics (ISRM) to determine the dynamic characteristics of rock materials. In order to further verify this testing technique and microscopically reveal the dynamic responses of specimens in SHPB tests, a numerical SHPB test system was established based on particle flow code (PFC). Numerical dynamic tests under different impact velocities were conducted. Investigation of the stresses at the ends of a specimen showed that the specimen could reach stress equilibrium after several wave reverberations, and this balance could be maintained well for a certain time period after the peak stress. In addition, analyses of the reflected waves showed that there was a clear relationship between the variation of the reflected wave and the stress equilibrium state in the specimen, and the turning point of the reflected wave corresponded well with the peak stress in the specimen. Furthermore, the reflected waves can be classified into three types according to their patterns. Under certain impact velocities, the specimen deforms at a constant strain rate during the whole loading process. Finally, the influence of the micro-strength ratio (\({{\tau_{\text{c}} } \mathord{\left/ {\vphantom {{\tau_{\text{c}} } {\sigma_{\text{c}} }}} \right. \kern-0pt} {\sigma_{\text{c}} }}\)) and distribution pattern on the dynamic increase factor (DIF) of the strength DIF were studied, and the lateral inertia confinement and heterogeneity were found to be two important factors causing the strain rate effect for rock materials.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Al-Mousawi MM, Reid SR, Deans WF (1997) The use of the split Hopkinson pressure bar techniques in high strain rate materials testing. Proc Inst Mech Eng Part C 211:273–292CrossRef Al-Mousawi MM, Reid SR, Deans WF (1997) The use of the split Hopkinson pressure bar techniques in high strain rate materials testing. Proc Inst Mech Eng Part C 211:273–292CrossRef
Zurück zum Zitat Bertholf LD, Karnes CH (1975) Two-dimensional analysis of the split Hopkinson pressure bar system. J Mech Phys Solids 23(1):1–19CrossRef Bertholf LD, Karnes CH (1975) Two-dimensional analysis of the split Hopkinson pressure bar system. J Mech Phys Solids 23(1):1–19CrossRef
Zurück zum Zitat Cai M, Kaiser PK, Suorineni F, Su K (2007) A study on the dynamic behavior of the Meuse/Haute-Marne argillite. Phys Chem Earth 32(8–14):907–916CrossRef Cai M, Kaiser PK, Suorineni F, Su K (2007) A study on the dynamic behavior of the Meuse/Haute-Marne argillite. Phys Chem Earth 32(8–14):907–916CrossRef
Zurück zum Zitat Cotsovos DM, Pavlović MN (2008) Numerical investigation of concrete subjected to compressive impact loading. Part 2: parametric investigation of factors affecting behaviour at high loading rates. Comput Struct 86(1–2):164–180CrossRef Cotsovos DM, Pavlović MN (2008) Numerical investigation of concrete subjected to compressive impact loading. Part 2: parametric investigation of factors affecting behaviour at high loading rates. Comput Struct 86(1–2):164–180CrossRef
Zurück zum Zitat Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Géotechnique 29(1):47–65CrossRef Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Géotechnique 29(1):47–65CrossRef
Zurück zum Zitat Deluzarche R, Cambou B (2006) Discrete numerical modelling of rockfill dams. Int J Numer Anal Meth Geomech 30:1075–1096CrossRef Deluzarche R, Cambou B (2006) Discrete numerical modelling of rockfill dams. Int J Numer Anal Meth Geomech 30:1075–1096CrossRef
Zurück zum Zitat Demirdag S, Tufekci K, Kayacan R, Yavuz H, Altindag R (2010) Dynamic mechanical behavior of some carbonate rocks. Int J Rock Mech Min Sci 47(2):307–312CrossRef Demirdag S, Tufekci K, Kayacan R, Yavuz H, Altindag R (2010) Dynamic mechanical behavior of some carbonate rocks. Int J Rock Mech Min Sci 47(2):307–312CrossRef
Zurück zum Zitat Diederichs MS, Kaiser PK, Eberhardt E (2004) Damage initiation and propagation in hard rock during tunnelling and the influence of near-face stress rotation. Int J Rock Mech Min Sci 41(5):785–812CrossRef Diederichs MS, Kaiser PK, Eberhardt E (2004) Damage initiation and propagation in hard rock during tunnelling and the influence of near-face stress rotation. Int J Rock Mech Min Sci 41(5):785–812CrossRef
Zurück zum Zitat Frew DJ, Forrestal MJ, Chen W (2001) A split Hopkinson pressure bar technique to determine compressive stress–strain data for rock materials. Exp Mech 41(1):40–46CrossRef Frew DJ, Forrestal MJ, Chen W (2001) A split Hopkinson pressure bar technique to determine compressive stress–strain data for rock materials. Exp Mech 41(1):40–46CrossRef
Zurück zum Zitat Hartley RS, Cloete TJ, Nurick GN (2007) An experimental assessment of friction effects in the split Hopkinson pressure bar using the ring compression test. Int J Impact Eng 34(10):1705–1728CrossRef Hartley RS, Cloete TJ, Nurick GN (2007) An experimental assessment of friction effects in the split Hopkinson pressure bar using the ring compression test. Int J Impact Eng 34(10):1705–1728CrossRef
Zurück zum Zitat Hazzard JF, Young RP (2004) Dynamic modelling of induced seismicity. Int J Rock Mech Min Sci 41(8):1365–1376CrossRef Hazzard JF, Young RP (2004) Dynamic modelling of induced seismicity. Int J Rock Mech Min Sci 41(8):1365–1376CrossRef
Zurück zum Zitat Hazzard JF, Young RP, Maxwell SC (2000) Micromechanical modeling of cracking and failure in brittle rocks. J Geophys Res 105(B7):16683–16697CrossRef Hazzard JF, Young RP, Maxwell SC (2000) Micromechanical modeling of cracking and failure in brittle rocks. J Geophys Res 105(B7):16683–16697CrossRef
Zurück zum Zitat Hentz S, Donzé FV, Daudeville L (2004) Discrete element modelling of concrete submitted to dynamic loading at high strain rates. Comput Struct 82(29–30):2509–2524CrossRef Hentz S, Donzé FV, Daudeville L (2004) Discrete element modelling of concrete submitted to dynamic loading at high strain rates. Comput Struct 82(29–30):2509–2524CrossRef
Zurück zum Zitat Itasca (2008) PFC2D: Particle flow code in 2 dimensions, version 4.0, user’s manual. Itasca Consulting Group, Inc., Minneapolis, MN Itasca (2008) PFC2D: Particle flow code in 2 dimensions, version 4.0, user’s manual. Itasca Consulting Group, Inc., Minneapolis, MN
Zurück zum Zitat Iwamoto T, Yokoyama T (2012) Effects of radial inertia and end friction in specimen geometry in split Hopkinson pressure bar tests: a computational study. Mech Mater 51:97–109CrossRef Iwamoto T, Yokoyama T (2012) Effects of radial inertia and end friction in specimen geometry in split Hopkinson pressure bar tests: a computational study. Mech Mater 51:97–109CrossRef
Zurück zum Zitat Janach W (1976) The role of bulking in brittle failure of rocks under rapid compression. Int J Rock Mech Min Sci Geomech Abstr 13(6):177–186CrossRef Janach W (1976) The role of bulking in brittle failure of rocks under rapid compression. Int J Rock Mech Min Sci Geomech Abstr 13(6):177–186CrossRef
Zurück zum Zitat Kolsky H (1949) An investigation of the mechanical properties of materials at very high rates of loading. Proc Phys Soc Lond Ser B 62:676–700CrossRef Kolsky H (1949) An investigation of the mechanical properties of materials at very high rates of loading. Proc Phys Soc Lond Ser B 62:676–700CrossRef
Zurück zum Zitat Kumar A (1968) The effect of stress rate and temperature on the strength of basalt and granite. Geophysics 33(3):501–510CrossRef Kumar A (1968) The effect of stress rate and temperature on the strength of basalt and granite. Geophysics 33(3):501–510CrossRef
Zurück zum Zitat Li XB, Gu DS (1994) Rock impact dynamics. Central South University of Technology Press, Changsha, pp 14 Li XB, Gu DS (1994) Rock impact dynamics. Central South University of Technology Press, Changsha, pp 14
Zurück zum Zitat Li QM, Meng H (2003) About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test. Int J Solids Struct 40(2):343–360CrossRef Li QM, Meng H (2003) About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test. Int J Solids Struct 40(2):343–360CrossRef
Zurück zum Zitat Li XB, Lok TS, Zhao J, Zhao PJ (2000) Oscillation elimination in the Hopkinson bar apparatus and resultant complete dynamic stress–strain curves for rocks. Int J Rock Mech Min Sci 37(7):1055–1060CrossRef Li XB, Lok TS, Zhao J, Zhao PJ (2000) Oscillation elimination in the Hopkinson bar apparatus and resultant complete dynamic stress–strain curves for rocks. Int J Rock Mech Min Sci 37(7):1055–1060CrossRef
Zurück zum Zitat Li XB, Lok TS, Zhao J (2005) Dynamic characteristics of granite subjected to intermediate loading rate. Rock Mech Rock Eng 38(1):21–39CrossRef Li XB, Lok TS, Zhao J (2005) Dynamic characteristics of granite subjected to intermediate loading rate. Rock Mech Rock Eng 38(1):21–39CrossRef
Zurück zum Zitat Li XB, Zhou ZL, Lok TS, Hong L, Yin TB (2008) Innovative testing technique of rock subjected to coupled static and dynamic loads. Int J Rock Mech Min Sci 45(5):739–748CrossRef Li XB, Zhou ZL, Lok TS, Hong L, Yin TB (2008) Innovative testing technique of rock subjected to coupled static and dynamic loads. Int J Rock Mech Min Sci 45(5):739–748CrossRef
Zurück zum Zitat Li XB, Zhou ZL, Liu DS, Zou Y, Yin TB (2011) Wave shaping by special shaped striker in SHPB tests. In: Zhou YX, Zhao J (eds) Advances in rock dynamics and applications. CRC Press, Boca Raton, p 105–123CrossRef Li XB, Zhou ZL, Liu DS, Zou Y, Yin TB (2011) Wave shaping by special shaped striker in SHPB tests. In: Zhou YX, Zhao J (eds) Advances in rock dynamics and applications. CRC Press, Boca Raton, p 105–123CrossRef
Zurück zum Zitat Lok TS, Li XB, Liu DS, Zhao PJ (2002) Testing and response of large diameter brittle materials subjected to high strain rate. ASCE J Mater Civil Eng 14(3):262–269CrossRef Lok TS, Li XB, Liu DS, Zhao PJ (2002) Testing and response of large diameter brittle materials subjected to high strain rate. ASCE J Mater Civil Eng 14(3):262–269CrossRef
Zurück zum Zitat Lu YB, Li QM, Ma GW (2010) Numerical investigation of the dynamic compressive strength of rocks based on split Hopkinson pressure bar tests. Int J Rock Mech Min Sci 47(5):829–838CrossRef Lu YB, Li QM, Ma GW (2010) Numerical investigation of the dynamic compressive strength of rocks based on split Hopkinson pressure bar tests. Int J Rock Mech Min Sci 47(5):829–838CrossRef
Zurück zum Zitat Ma GW, Wang XJ, Li QM (2010) Modeling strain rate effect of heterogeneous materials using SPH method. Rock Mech Rock Eng 43:763–776CrossRef Ma GW, Wang XJ, Li QM (2010) Modeling strain rate effect of heterogeneous materials using SPH method. Rock Mech Rock Eng 43:763–776CrossRef
Zurück zum Zitat Ma GW, Wang XJ, Ren F (2011) Numerical simulation of compressive failure of heterogeneous rock-like materials using SPH method. Int J Rock Mech Min Sci 48(3):353–363CrossRef Ma GW, Wang XJ, Ren F (2011) Numerical simulation of compressive failure of heterogeneous rock-like materials using SPH method. Int J Rock Mech Min Sci 48(3):353–363CrossRef
Zurück zum Zitat Park SW, Xia Q, Zhou M (2001) Dynamic behavior of concrete at high strain rates and pressures: II. Numerical simulation. Int J Impact Eng 25(9):887–910CrossRef Park SW, Xia Q, Zhou M (2001) Dynamic behavior of concrete at high strain rates and pressures: II. Numerical simulation. Int J Impact Eng 25(9):887–910CrossRef
Zurück zum Zitat Potyondy DO, Cundall PA (2004) A bonded-particle model for rock. Int J Rock Mech Min Sci 41(8):1329–1364CrossRef Potyondy DO, Cundall PA (2004) A bonded-particle model for rock. Int J Rock Mech Min Sci 41(8):1329–1364CrossRef
Zurück zum Zitat Qi CZ, Wang MY, Qian QH (2009) Strain-rate effects on the strength and fragmentation size of rocks. Int J Impact Eng 36(12):1355–1364CrossRef Qi CZ, Wang MY, Qian QH (2009) Strain-rate effects on the strength and fragmentation size of rocks. Int J Impact Eng 36(12):1355–1364CrossRef
Zurück zum Zitat Ravichandran G, Subhash G (1994) Critical appraisal of limiting strain rates for compression testing of ceramics in a split Hopkinson pressure bar. J Am Ceram Soc 77(1):263–267CrossRef Ravichandran G, Subhash G (1994) Critical appraisal of limiting strain rates for compression testing of ceramics in a split Hopkinson pressure bar. J Am Ceram Soc 77(1):263–267CrossRef
Zurück zum Zitat Read RS (2004) 20 years of excavation response studies at AECL’s Underground Research Laboratory. Int J Rock Mech Min Sci 41(8):1251–1275CrossRef Read RS (2004) 20 years of excavation response studies at AECL’s Underground Research Laboratory. Int J Rock Mech Min Sci 41(8):1251–1275CrossRef
Zurück zum Zitat Tedesco JW, Ross CA (1998) Strain-rate-dependent constitutive equations for concrete. ASME J Press Vessel Technol 120(4):398–405CrossRef Tedesco JW, Ross CA (1998) Strain-rate-dependent constitutive equations for concrete. ASME J Press Vessel Technol 120(4):398–405CrossRef
Zurück zum Zitat Wang YN, Tonon F (2009) Modeling Lac du Bonnet granite using a discrete element model. Int J Rock Mech Min Sci 46(7):1124–1135CrossRef Wang YN, Tonon F (2009) Modeling Lac du Bonnet granite using a discrete element model. Int J Rock Mech Min Sci 46(7):1124–1135CrossRef
Zurück zum Zitat Xia K, Nasseri MHB, Mohanty B, Lu F, Chen R, Luo SN (2008) Effects of microstructures on dynamic compression of Barre granite. Int J Rock Mech Min Sci 45(6):879–887CrossRef Xia K, Nasseri MHB, Mohanty B, Lu F, Chen R, Luo SN (2008) Effects of microstructures on dynamic compression of Barre granite. Int J Rock Mech Min Sci 45(6):879–887CrossRef
Zurück zum Zitat Zhang QB, Zhao J (2013b) Determination of mechanical properties and full-field strain measurements of rock material under dynamic loads. Int J Rock Mech Min Sci 60:423–439 Zhang QB, Zhao J (2013b) Determination of mechanical properties and full-field strain measurements of rock material under dynamic loads. Int J Rock Mech Min Sci 60:423–439
Zurück zum Zitat Zhang QB, Zhao J (2013c) Effect of loading rate on fracture toughness and failure micromechanisms in marble. Eng Fract Mech 102:288–309CrossRef Zhang QB, Zhao J (2013c) Effect of loading rate on fracture toughness and failure micromechanisms in marble. Eng Fract Mech 102:288–309CrossRef
Zurück zum Zitat Zhao J, Zhou YX, Hefny AM, Cai JG, Chen SG, Li HB, Liu JF, Jain M, Foo ST, Seah CC (1999) Rock dynamics research related to cavern development for ammunition storage. Tunn Undergr Sp Tech 14(4):513–526CrossRef Zhao J, Zhou YX, Hefny AM, Cai JG, Chen SG, Li HB, Liu JF, Jain M, Foo ST, Seah CC (1999) Rock dynamics research related to cavern development for ammunition storage. Tunn Undergr Sp Tech 14(4):513–526CrossRef
Zurück zum Zitat Zhou ZL, Li XB, Ye ZY, Liu KW (2010) Obtaining constitutive relationship for rate-dependent rock in SHPB tests. Rock Mech Rock Eng 43(6):697–706CrossRef Zhou ZL, Li XB, Ye ZY, Liu KW (2010) Obtaining constitutive relationship for rate-dependent rock in SHPB tests. Rock Mech Rock Eng 43(6):697–706CrossRef
Zurück zum Zitat Zhou ZL, Li XB, Liu AH, Zou Y (2011) Stress uniformity of split Hopkinson pressure bar under half-sine wave loads. Int J Rock Mech Min Sci 48(4):697–701CrossRef Zhou ZL, Li XB, Liu AH, Zou Y (2011) Stress uniformity of split Hopkinson pressure bar under half-sine wave loads. Int J Rock Mech Min Sci 48(4):697–701CrossRef
Zurück zum Zitat Zhou YX, Xia K, Li XB, Li HB, Ma GW, Zhao J, Zhou ZL, Dai F (2012) Suggested methods for determining the dynamic strength parameters and mode-I fracture toughness of rock materials. Int J Rock Mech Min Sci 49:105–112CrossRef Zhou YX, Xia K, Li XB, Li HB, Ma GW, Zhao J, Zhou ZL, Dai F (2012) Suggested methods for determining the dynamic strength parameters and mode-I fracture toughness of rock materials. Int J Rock Mech Min Sci 49:105–112CrossRef
Zurück zum Zitat Zhu WC, Bai Y, Li XB, Niu LL (2012) Numerical simulation on rock failure under combined static and dynamic loading during SHPB tests. Int J Impact Eng 49:142–157CrossRef Zhu WC, Bai Y, Li XB, Niu LL (2012) Numerical simulation on rock failure under combined static and dynamic loading during SHPB tests. Int J Impact Eng 49:142–157CrossRef
Metadaten
Titel
Numerical Simulation of the Rock SHPB Test with a Special Shape Striker Based on the Discrete Element Method
verfasst von
Xibing Li
Yang Zou
Zilong Zhou
Publikationsdatum
01.09.2014
Verlag
Springer Vienna
Erschienen in
Rock Mechanics and Rock Engineering / Ausgabe 5/2014
Print ISSN: 0723-2632
Elektronische ISSN: 1434-453X
DOI
https://doi.org/10.1007/s00603-013-0484-6

Weitere Artikel der Ausgabe 5/2014

Rock Mechanics and Rock Engineering 5/2014 Zur Ausgabe