Skip to main content
Erschienen in: Strength of Materials 1/2020

16.04.2020

Numerical Simulation of the Temperature and Stress State on the Additive Friction Stir with the Smoothed Particle Hydrodynamics Method

verfasst von: H. G. Yang

Erschienen in: Strength of Materials | Ausgabe 1/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The additive friction stir process provides a new approach to additive manufacturing by depositing and coating of a variety of similar and dissimilar materials with imparting them exceptional mechanical properties. During this process, the filler material can be deposited layer-by-layer on the substrate effected by heat and plastic deformation due to friction between the filler rod and substrate. For understanding complex physics of this advanced process, a numerical simulation model for the first layer deposition with the smoothed particle hydrodynamics method was constructed and implemented in an LS-DYNA commercial complex. The temperature distribution, material deposition, deformation and stress state were evaluated on the basis of simulation results. The Vickers hardness distribution was also measured in the experiment to verify the stress distribution. A higher stress observed on the top layer of deposition and Vickers hardness appeared to be similar characteristics due to the relationship between stress and hardness.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat F. Calignano, D. Manfredi, E. P. Ambrosio, et al., “Overview on additive manufacturing technologies,” Proc. IEEE, 105, No. 4, 593–612 (2017).CrossRef F. Calignano, D. Manfredi, E. P. Ambrosio, et al., “Overview on additive manufacturing technologies,” Proc. IEEE, 105, No. 4, 593–612 (2017).CrossRef
2.
Zurück zum Zitat S. Mellor, L. Hao, and D. Zhang, “Economics additive manufacturing?: A framework for implementation,” Int. J. Prod. Econ., 149, 194–201 (2014).CrossRef S. Mellor, L. Hao, and D. Zhang, “Economics additive manufacturing?: A framework for implementation,” Int. J. Prod. Econ., 149, 194–201 (2014).CrossRef
3.
Zurück zum Zitat M. Yakout, A. Cadamuro, M. Elbestawi, and S. Veldhuis, “The selection of process parameters in additive manufacturing for aerospace alloys,” Int. J. Adv. Manuf. Technol., 92, Nos. 5–8, 2081–2098 (2017). M. Yakout, A. Cadamuro, M. Elbestawi, and S. Veldhuis, “The selection of process parameters in additive manufacturing for aerospace alloys,” Int. J. Adv. Manuf. Technol., 92, Nos. 5–8, 2081–2098 (2017).
4.
Zurück zum Zitat J. Lee, J. An, and C. Chua, “Fundamentals and applications of 3D printing for novel materials,” Appl. Mater. Today, 7, 120–133 (2017).CrossRef J. Lee, J. An, and C. Chua, “Fundamentals and applications of 3D printing for novel materials,” Appl. Mater. Today, 7, 120–133 (2017).CrossRef
5.
Zurück zum Zitat R. Leal, F. Barreiros, L. Alves, et al., “Additive manufacturing tooling for the automotive industry,” Int. J. Adv. Manuf. Technol., 92, 1671–1676 (2017).CrossRef R. Leal, F. Barreiros, L. Alves, et al., “Additive manufacturing tooling for the automotive industry,” Int. J. Adv. Manuf. Technol., 92, 1671–1676 (2017).CrossRef
6.
Zurück zum Zitat Y. Suyuan and Z. Baolei, “Experimental study of electron beam welding of magnesium alloys,” Rare Metals, 30, No. 1, 364–369 (2011). Y. Suyuan and Z. Baolei, “Experimental study of electron beam welding of magnesium alloys,” Rare Metals, 30, No. 1, 364–369 (2011).
7.
Zurück zum Zitat C. Ng, M. Savalani, M. Lau, and H. Man, “Microstructure and mechanical properties of selective laser melted magnesium,” Appl. Surf. Sci., 257, No. 17, 7447–7454 (2011).CrossRef C. Ng, M. Savalani, M. Lau, and H. Man, “Microstructure and mechanical properties of selective laser melted magnesium,” Appl. Surf. Sci., 257, No. 17, 7447–7454 (2011).CrossRef
8.
Zurück zum Zitat W. Xin, “Forming characteristics of thin-walled samples by metal fused-coating additive manufacturing,” Int. J. Adv. Manuf. Technol., 96, No. 27, 2367–2372 (2018).CrossRef W. Xin, “Forming characteristics of thin-walled samples by metal fused-coating additive manufacturing,” Int. J. Adv. Manuf. Technol., 96, No. 27, 2367–2372 (2018).CrossRef
9.
Zurück zum Zitat M. Gussev, N. Sridharan, M. Norfolk, et al., “Effect of post weld heat treatment on the 6061 aluminum alloy produced by ultrasonic additive manufacturing,” Mater. Sci. Eng. A, 684, 606–616 (2017).CrossRef M. Gussev, N. Sridharan, M. Norfolk, et al., “Effect of post weld heat treatment on the 6061 aluminum alloy produced by ultrasonic additive manufacturing,” Mater. Sci. Eng. A, 684, 606–616 (2017).CrossRef
10.
Zurück zum Zitat S. Palanivel, P. Nelaturu, B. Glass, and R. Mishra, “Friction stir additive manufacturing for high structural performance through microstructural control in an Mg based WE43 alloy,” Mater. Design, 65, 934–952 (2015).CrossRef S. Palanivel, P. Nelaturu, B. Glass, and R. Mishra, “Friction stir additive manufacturing for high structural performance through microstructural control in an Mg based WE43 alloy,” Mater. Design, 65, 934–952 (2015).CrossRef
11.
Zurück zum Zitat M. Yuqing, K. Liming, H. Chunping, et al, “Formation characteristic, microstructure, and mechanical performances of aluminum-based components by friction stir additive manufacturing Tool rotation,” Int. J. Adv. Manuf. Technol., 83, Nos. 9–12, 1637–1647 (2016). M. Yuqing, K. Liming, H. Chunping, et al, “Formation characteristic, microstructure, and mechanical performances of aluminum-based components by friction stir additive manufacturing Tool rotation,” Int. J. Adv. Manuf. Technol., 83, Nos. 9–12, 1637–1647 (2016).
12.
Zurück zum Zitat J. K. Schultz, System for Continuous Feeding of Filler Material for Friction Stir Welding, Processing and Fabrication, US Patent US20120279441A1 (2012). J. K. Schultz, System for Continuous Feeding of Filler Material for Friction Stir Welding, Processing and Fabrication, US Patent US20120279441A1 (2012).
13.
Zurück zum Zitat O. Rivera, P. Allison, J. Jordon, et al., “A Microstructures and mechanical behavior of Inconel 625 fabricated by solid-state additive manufacturing,” Mater. Sci. Eng. A, 694, 1–9 (2017).CrossRef O. Rivera, P. Allison, J. Jordon, et al., “A Microstructures and mechanical behavior of Inconel 625 fabricated by solid-state additive manufacturing,” Mater. Sci. Eng. A, 694, 1–9 (2017).CrossRef
14.
Zurück zum Zitat K. Kandasamy, L. E. Renaghan, J. R. Calvert, et al., “Solid-state additive manufacturing of aluminum and magnesium alloys,” in: Proc. of the Materials Science and Technology Conference and Exhibition 2013 (MS&T’13, Oct. 27–31, 2013, Montreal, Quebec, Canada), Curran Associates, Inc. (2013), pp. 59–69. K. Kandasamy, L. E. Renaghan, J. R. Calvert, et al., “Solid-state additive manufacturing of aluminum and magnesium alloys,” in: Proc. of the Materials Science and Technology Conference and Exhibition 2013 (MS&T’13, Oct. 27–31, 2013, Montreal, Quebec, Canada), Curran Associates, Inc. (2013), pp. 59–69.
15.
Zurück zum Zitat K. H. Muci-Küchler, E. Saint, J. Street, et al., “Simulation of a refill friction stir spot welding process using a fully coupled thermo-mechanical FEM model,” J. Manuf. Sci. Eng., 132, No. 1, 014503 (2010). K. H. Muci-Küchler, E. Saint, J. Street, et al., “Simulation of a refill friction stir spot welding process using a fully coupled thermo-mechanical FEM model,” J. Manuf. Sci. Eng., 132, No. 1, 014503 (2010).
16.
Zurück zum Zitat J. J. Monaghan, “Smoothed particle hydrodynamics,” Annu. Rev. Astron. Astrophys., 30, 543–574 (1992).CrossRef J. J. Monaghan, “Smoothed particle hydrodynamics,” Annu. Rev. Astron. Astrophys., 30, 543–574 (1992).CrossRef
17.
Zurück zum Zitat W. Pan, D. Li, A. M. Tartakovsky, et al., “A new smoothed particle hydrodynamics non-Newtonian model for friction stir welding: Process modeling and simulation of microstructure evolution in a magnesium alloy,” Int. J. Plasticity, 48, 189–204 (2013).CrossRef W. Pan, D. Li, A. M. Tartakovsky, et al., “A new smoothed particle hydrodynamics non-Newtonian model for friction stir welding: Process modeling and simulation of microstructure evolution in a magnesium alloy,” Int. J. Plasticity, 48, 189–204 (2013).CrossRef
18.
Zurück zum Zitat P. W. Cleary, J. Ha, M. Prakash, T. Nguyen, “3D SPH flow predictions and validation for high pressure die casting of automotive components,” Appl. Math. Model., 30, No. 11, 1406–1427 (2006).CrossRef P. W. Cleary, J. Ha, M. Prakash, T. Nguyen, “3D SPH flow predictions and validation for high pressure die casting of automotive components,” Appl. Math. Model., 30, No. 11, 1406–1427 (2006).CrossRef
19.
Zurück zum Zitat Y. Xi, M. Bermingham, G. Wang, and M. Dargusch, “SPH/FE modeling of cutting force and chip formation during thermally assisted machining of Ti6Al4V alloy,” Comp. Mater. Sci., 84, 188–197 (2014).CrossRef Y. Xi, M. Bermingham, G. Wang, and M. Dargusch, “SPH/FE modeling of cutting force and chip formation during thermally assisted machining of Ti6Al4V alloy,” Comp. Mater. Sci., 84, 188–197 (2014).CrossRef
20.
Zurück zum Zitat D. Lv and Y. Zhang, “Numerical simulation of chipping formation process with smooth particle hydrodynamic (SPH) method for diamond drilling AIN ceramics,” Int. J. Adv. Manuf. Technol., 96, Nos. 5–8, 2257–2258 (2018). D. Lv and Y. Zhang, “Numerical simulation of chipping formation process with smooth particle hydrodynamic (SPH) method for diamond drilling AIN ceramics,” Int. J. Adv. Manuf. Technol., 96, Nos. 5–8, 2257–2258 (2018).
21.
Zurück zum Zitat Z. B. Wang, R. Chen, H. Wang, et al., “An overview of smoothed particle hydrodynamics for simulating multiphase flow,” Appl. Math. Model., 40, Nos. 23–24, 9625–9655 (2016). Z. B. Wang, R. Chen, H. Wang, et al., “An overview of smoothed particle hydrodynamics for simulating multiphase flow,” Appl. Math. Model., 40, Nos. 23–24, 9625–9655 (2016).
22.
Zurück zum Zitat J. Xu, “Heat transfer with explicit SPH method in LS-DYNA,” in: Proc. of the 12th Int. LS-DYNA Users Conference (June 3–5, 2012, Detroit, USA) (2012), pp. 1–12. J. Xu, “Heat transfer with explicit SPH method in LS-DYNA,” in: Proc. of the 12th Int. LS-DYNA Users Conference (June 3–5, 2012, Detroit, USA) (2012), pp. 1–12.
23.
Zurück zum Zitat J. R. Cahoon, W. H. Broughton, and A. R. Kutzak, “The determination of yield strength from hardness measurements,” Metall. Trans., 2, No. 7, 1979–1983 (1971). J. R. Cahoon, W. H. Broughton, and A. R. Kutzak, “The determination of yield strength from hardness measurements,” Metall. Trans., 2, No. 7, 1979–1983 (1971).
Metadaten
Titel
Numerical Simulation of the Temperature and Stress State on the Additive Friction Stir with the Smoothed Particle Hydrodynamics Method
verfasst von
H. G. Yang
Publikationsdatum
16.04.2020
Verlag
Springer US
Erschienen in
Strength of Materials / Ausgabe 1/2020
Print ISSN: 0039-2316
Elektronische ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-020-00146-1

Weitere Artikel der Ausgabe 1/2020

Strength of Materials 1/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.