Skip to main content
Erschienen in: Journal of Failure Analysis and Prevention 1/2017

01.02.2017 | Technical Article---Peer-Reviewed

Numerical Study of a Transonic Aircraft Wing for the Prediction of Flutter Failure

verfasst von: Indrajeet Singh, R. K. Mishra, P. S. Aswatha Narayana

Erschienen in: Journal of Failure Analysis and Prevention | Ausgabe 1/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the present paper, computational analysis has been carried out to assess the coupled fluid–structure interaction using NASTRAN finite element approach. A straight swept wing of aluminum material is studied at transonic zone. Analysis has been carried out to find the natural frequency by fluid–structure interaction, then adopting its natural frequency to calculate the reduced frequency for analyzing the flutter effectiveness. A typical case study of plate has been carried out for better understanding the flutter which was then adopted for the swept wing. A fluid–structure interaction phenomenon provides an additional energy to the moving object in terms of frequency in transonic zone. In this speed zone, the divergence speed results a drag that leads to the object to be in a stronger twisting mode resulting in catastrophic failure of the aircraft. The study has defined the flutter boundary of the wing in terms of velocity and frequency which will be very useful in preventing the flutter failure of the aircraft wing through appropriate design improvement or through restriction operational regime.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat H.J.-P. Morand, O. Roger, Fluid Structure Interaction (Wiley, Hoboken, 1995) H.J.-P. Morand, O. Roger, Fluid Structure Interaction (Wiley, Hoboken, 1995)
2.
Zurück zum Zitat L.C. Freudinger, Flutter Clearance of the F-18 High-Angle-of-Attack Research Vehicle with Experimental Wingtip Instrumentation Pods (NASA Dryden Flight Research Center, Edwards, 1989) L.C. Freudinger, Flutter Clearance of the F-18 High-Angle-of-Attack Research Vehicle with Experimental Wingtip Instrumentation Pods (NASA Dryden Flight Research Center, Edwards, 1989)
3.
Zurück zum Zitat C.E. Lemley, Design Criteria for the Prediction and Prevention of Panel Flutter, vols. I and II, Air Force Flight Dynamics Laboratory, Write-Patternson Air Force Base, Ohio, AFFDL-TR-67-140 (1968) C.E. Lemley, Design Criteria for the Prediction and Prevention of Panel Flutter, vols. I and II, Air Force Flight Dynamics Laboratory, Write-Patternson Air Force Base, Ohio, AFFDL-TR-67-140 (1968)
4.
Zurück zum Zitat S.J. Pollock et al., Evaluation of methods for prediction and prevention of wing/store flutter. J. Aircr. 19(6), 492–498 (1982)CrossRef S.J. Pollock et al., Evaluation of methods for prediction and prevention of wing/store flutter. J. Aircr. 19(6), 492–498 (1982)CrossRef
5.
Zurück zum Zitat E.M. Lee-Rausch, J.T. Batina, Wing flutter boundary prediction using unsteady Euler aerodynamic method. J. Aircr. 32(2), 416–422 (1995)CrossRef E.M. Lee-Rausch, J.T. Batina, Wing flutter boundary prediction using unsteady Euler aerodynamic method. J. Aircr. 32(2), 416–422 (1995)CrossRef
6.
Zurück zum Zitat F. Liu et al., Calculation of wing flutter by a coupled fluid–structure method. J. Aircr. 38(2), 334–342 (2001)CrossRef F. Liu et al., Calculation of wing flutter by a coupled fluid–structure method. J. Aircr. 38(2), 334–342 (2001)CrossRef
7.
Zurück zum Zitat C. Grandmont, Y. Maday, Existence for an unsteady fluid–structure interaction problem. ESAIM 34(3), 609–636 (2000)CrossRef C. Grandmont, Y. Maday, Existence for an unsteady fluid–structure interaction problem. ESAIM 34(3), 609–636 (2000)CrossRef
8.
Zurück zum Zitat J. Zeng et al., Ground Vibration Test Identified Structure Model for Flutter Envelope Prediction. AIAA Atmospheric Flight Mechanics Conference 2012 J. Zeng et al., Ground Vibration Test Identified Structure Model for Flutter Envelope Prediction. AIAA Atmospheric Flight Mechanics Conference 2012
9.
Zurück zum Zitat W. Chajec, Flutter calculation based on GVT-results and theoretical mass model. Aviation 13(4), 122–129 (2009)CrossRef W. Chajec, Flutter calculation based on GVT-results and theoretical mass model. Aviation 13(4), 122–129 (2009)CrossRef
10.
Zurück zum Zitat A.C. Pankaj et al., Aircraft flutter prediction using experimental modal parameters. Aircr. Eng. Aerosp. Technol. 85(2), 87–96 (2013)CrossRef A.C. Pankaj et al., Aircraft flutter prediction using experimental modal parameters. Aircr. Eng. Aerosp. Technol. 85(2), 87–96 (2013)CrossRef
11.
Zurück zum Zitat E. Lee-Rausch, J.T. Baitina, Wing flutter computations using an aerodynamic model based on the Navier–Stokes equations. J. Aircr. 33(6), 1139–1147 (1996)CrossRef E. Lee-Rausch, J.T. Baitina, Wing flutter computations using an aerodynamic model based on the Navier–Stokes equations. J. Aircr. 33(6), 1139–1147 (1996)CrossRef
12.
Zurück zum Zitat H.J. Cunningham, J.T. Batina, R.M. Bennett, Modern wing flutter analysis by computational fluid dynamics methods. J. Aircr. 25(10), 962–968 (1988)CrossRef H.J. Cunningham, J.T. Batina, R.M. Bennett, Modern wing flutter analysis by computational fluid dynamics methods. J. Aircr. 25(10), 962–968 (1988)CrossRef
13.
Zurück zum Zitat A.S.F. Wong, H.M. Tsai, Calculation of Wing Flutter by a Coupled CFD-CSD Method. 38th Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings (2000) A.S.F. Wong, H.M. Tsai, Calculation of Wing Flutter by a Coupled CFD-CSD Method. 38th Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings (2000)
14.
Zurück zum Zitat P. Le Tallec, M. Jean, Fluid structure interaction with large structural displacements. Comput. Methods Appl. Mech. Eng. 190(24), 3039–3067 (2001)CrossRef P. Le Tallec, M. Jean, Fluid structure interaction with large structural displacements. Comput. Methods Appl. Mech. Eng. 190(24), 3039–3067 (2001)CrossRef
15.
Zurück zum Zitat C. Pak, L. Shun-fat, Reduced Uncertainties in the Flutter Analysis of the Aerostructures Test Wing. 27th International Congress of the Aeronautical Sciences, 19–24 September 2010, Nice, France (2010) C. Pak, L. Shun-fat, Reduced Uncertainties in the Flutter Analysis of the Aerostructures Test Wing. 27th International Congress of the Aeronautical Sciences, 19–24 September 2010, Nice, France (2010)
16.
Zurück zum Zitat S. Raja et al., Flutter control of a composite plate with piezoelectric multilayered actuators. Aerosp. Sci. Technol. 10(5), 435–441 (2006)CrossRef S. Raja et al., Flutter control of a composite plate with piezoelectric multilayered actuators. Aerosp. Sci. Technol. 10(5), 435–441 (2006)CrossRef
17.
Zurück zum Zitat J. Heeg, An analytical and experimental investigation of flutter suppression via piezoelectric actuation (National Aeronautics and Space Administration, Langley Research Center, Hampton, 1992)CrossRef J. Heeg, An analytical and experimental investigation of flutter suppression via piezoelectric actuation (National Aeronautics and Space Administration, Langley Research Center, Hampton, 1992)CrossRef
18.
Zurück zum Zitat P. Marzocca, L. Librescu, W.A. Silva, Flutter, post-flutter, and control of a supersonic wing section. J. Guid. Control Dyn. 25(5), 962–970 (2002)CrossRef P. Marzocca, L. Librescu, W.A. Silva, Flutter, post-flutter, and control of a supersonic wing section. J. Guid. Control Dyn. 25(5), 962–970 (2002)CrossRef
Metadaten
Titel
Numerical Study of a Transonic Aircraft Wing for the Prediction of Flutter Failure
verfasst von
Indrajeet Singh
R. K. Mishra
P. S. Aswatha Narayana
Publikationsdatum
01.02.2017
Verlag
Springer US
Erschienen in
Journal of Failure Analysis and Prevention / Ausgabe 1/2017
Print ISSN: 1547-7029
Elektronische ISSN: 1864-1245
DOI
https://doi.org/10.1007/s11668-016-0209-8

Weitere Artikel der Ausgabe 1/2017

Journal of Failure Analysis and Prevention 1/2017 Zur Ausgabe

Case History---Peer-Reviewed

Fatigue Failure of a 2500-Ton Forge Press

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.