Skip to main content
Erschienen in: Journal of Engineering Mathematics 1/2019

08.10.2019

Numerical study of double-diffusive dissipative reactive convective flow in an open vertical duct containing a non-Darcy porous medium with Robin boundary conditions

verfasst von: J. C. Umavathi, O. Anwar Bég

Erschienen in: Journal of Engineering Mathematics | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A mathematical model for thermosolutal convection flow in an open two-dimensional vertical channel containing a porous medium saturated with reactive Newtonian fluid is developed and studied. Robin boundary conditions are prescribed, and a first-order homogenous chemical reaction is considered. The Darcy–Forchheimer model is used to simulate both the first- and second-order porous mediums’ drag effects. For the general non-Darcy-case, a numerical solution is presented using the Runge–Kutta quadrature and a shooting method. The influences of thermal \(( {0 \le \lambda _1 \le 15} )\) and solute Grashof numbers \(( {0 \le \lambda _2 \le 20} )\), Biot numbers \(( {1 \le \textit{Bi}_1 \le 10, \textit{Bi}_2 =10 } )\), Brinkman number \(( {0 \le \textit{Br} \le 0.5} )\), first-order chemical reaction parameter \(( {2 \le \alpha \le 8} )\), porous medium parameter \(( {2 \le \sigma \le 8} )\) and Forchheimer (inertial drag) parameter \(( {0 \le I \le 12} )\) on the evolutions of velocity, temperature and concentration (species) distributions are visualized graphically. Nusselt number and skin friction at the walls are also computed for specific values of selected parameters. The study is relevant to the analysis of geothermal energy systems with chemical reaction.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kaviany M (1995) Principles of heat transfer in porous media, 2nd edn. Springer, New YorkMATH Kaviany M (1995) Principles of heat transfer in porous media, 2nd edn. Springer, New YorkMATH
2.
Zurück zum Zitat Nield DA, Bejan A (2013) Convection in porous media, 4th edn. Springer, New YorkMATH Nield DA, Bejan A (2013) Convection in porous media, 4th edn. Springer, New YorkMATH
3.
Zurück zum Zitat Ingham DB, Pop I (2002) Transport phenomena in porous media, 2nd edn. Pergamon, OxfordMATH Ingham DB, Pop I (2002) Transport phenomena in porous media, 2nd edn. Pergamon, OxfordMATH
4.
Zurück zum Zitat Philips (2009) Geological fluid dynamics: sub-surface flow and reactions. Cambridge University Press, Cambridge Philips (2009) Geological fluid dynamics: sub-surface flow and reactions. Cambridge University Press, Cambridge
5.
Zurück zum Zitat Gupta D, Kumar L, Anwar Bég O, Singh B (2014) Finite element analysis of transient heat and mass transfer in micro structural boundary layer flow from porous stretching sheet. Comput Therm Sci 6:155–169 Gupta D, Kumar L, Anwar Bég O, Singh B (2014) Finite element analysis of transient heat and mass transfer in micro structural boundary layer flow from porous stretching sheet. Comput Therm Sci 6:155–169
6.
Zurück zum Zitat Mamou M, Vasseur P, Bilgen E (1995) Multiple solutions for double-diffusive convection in a vertical porous enclosure. Int J Heat Mass Transf 38:1787–1798MATH Mamou M, Vasseur P, Bilgen E (1995) Multiple solutions for double-diffusive convection in a vertical porous enclosure. Int J Heat Mass Transf 38:1787–1798MATH
7.
Zurück zum Zitat Lashmi Narayana PA, Murthy PV (2008) Soret and Dufour effects on free convection heat and mass transfer from a horizontal flat plate in a Darcy porous medium. ASME J Heat Transf 130:104504 Lashmi Narayana PA, Murthy PV (2008) Soret and Dufour effects on free convection heat and mass transfer from a horizontal flat plate in a Darcy porous medium. ASME J Heat Transf 130:104504
8.
Zurück zum Zitat Prasad V, Kulacki FA (1985) Natural convection in porous media bounded by short concentric vertical cylinders. ASME J Heat Transf 107:147–154 Prasad V, Kulacki FA (1985) Natural convection in porous media bounded by short concentric vertical cylinders. ASME J Heat Transf 107:147–154
9.
Zurück zum Zitat Vasseur P, Wang CH, Sen M (1990) Natural convection in an inclined rectangular porous slot: Brinkman extended Darcy model. ASME J Heat Transf 112:507–511 Vasseur P, Wang CH, Sen M (1990) Natural convection in an inclined rectangular porous slot: Brinkman extended Darcy model. ASME J Heat Transf 112:507–511
10.
Zurück zum Zitat Umavathi JC, Kumar JP, Chamkha AJ, Pop I (2005) Mixed convection in a vertical porous channel. Transp Porous Media 61:315–335MathSciNet Umavathi JC, Kumar JP, Chamkha AJ, Pop I (2005) Mixed convection in a vertical porous channel. Transp Porous Media 61:315–335MathSciNet
11.
Zurück zum Zitat Umavathi JC, Mallikarjun Patil B, Pop I (2006) On laminar mixed convection flow in a vertical porous stratum with symmetric wall heating conditions. Int J Trans Phenom 8:127–140 Umavathi JC, Mallikarjun Patil B, Pop I (2006) On laminar mixed convection flow in a vertical porous stratum with symmetric wall heating conditions. Int J Trans Phenom 8:127–140
12.
Zurück zum Zitat Umavathi JC, Kumar JP, Sultana J (2012) Mixed convection flow in a vertical porous channel with boundary conditions of third kind with heat source/sink. J Porous Media 15:998–1007MATH Umavathi JC, Kumar JP, Sultana J (2012) Mixed convection flow in a vertical porous channel with boundary conditions of third kind with heat source/sink. J Porous Media 15:998–1007MATH
13.
Zurück zum Zitat Umavathi JC, Ravi Kanth ASV, Shekar M (2013) Mixed convective flow in a vertical channel filled with porous medium using differential transform method. Int J Math Arch 4:1–9 Umavathi JC, Ravi Kanth ASV, Shekar M (2013) Mixed convective flow in a vertical channel filled with porous medium using differential transform method. Int J Math Arch 4:1–9
14.
Zurück zum Zitat Brinkman HC (1947) On the permeability of media consisting of closely packed porous particles. Appl Sci Res A 1:81–86 Brinkman HC (1947) On the permeability of media consisting of closely packed porous particles. Appl Sci Res A 1:81–86
15.
Zurück zum Zitat Forchheimer F (1901) Wasserbewegung durch Boden. Z Ver Deut Ing 45:1736–1741 Forchheimer F (1901) Wasserbewegung durch Boden. Z Ver Deut Ing 45:1736–1741
16.
Zurück zum Zitat Anwar Bég O, Zueco J, Takhar HS (2008) Laminar free convection from a continuously moving vertical surface in a thermally-stratified, non-Darcian high-porosity medium: network numerical study. Int Commun Heat Mass Transf 35:810–816 Anwar Bég O, Zueco J, Takhar HS (2008) Laminar free convection from a continuously moving vertical surface in a thermally-stratified, non-Darcian high-porosity medium: network numerical study. Int Commun Heat Mass Transf 35:810–816
17.
Zurück zum Zitat Cheng CY (2006) Non-Darcy natural convection heat and mass transfer from a vertical wavy surface in saturated porous media. Appl Math Comput 182:1488–1500MathSciNetMATH Cheng CY (2006) Non-Darcy natural convection heat and mass transfer from a vertical wavy surface in saturated porous media. Appl Math Comput 182:1488–1500MathSciNetMATH
18.
Zurück zum Zitat Jena SK, Swarup Mahapatra K, Sarkar A (2013) Thermosolutal convection in a fluid porous composite medium. Heat Transf Asian Res 42:281–299 Jena SK, Swarup Mahapatra K, Sarkar A (2013) Thermosolutal convection in a fluid porous composite medium. Heat Transf Asian Res 42:281–299
19.
Zurück zum Zitat Bég TA, Rashidi MM, Anwar Bég O, Rahimzadeh N (2013) DTM semi-numerical simulation of biofluid-particle suspension flow and heat transfer in non-Darcian porous media. Comput Methods Biomech Biomed Eng 16:896–907 Bég TA, Rashidi MM, Anwar Bég O, Rahimzadeh N (2013) DTM semi-numerical simulation of biofluid-particle suspension flow and heat transfer in non-Darcian porous media. Comput Methods Biomech Biomed Eng 16:896–907
20.
Zurück zum Zitat Chen Z, Lyons SL, Guan Qin (2001) Derivation of the Forchheimer law via homogenization. Transp Porous Media 44:325–335MathSciNet Chen Z, Lyons SL, Guan Qin (2001) Derivation of the Forchheimer law via homogenization. Transp Porous Media 44:325–335MathSciNet
21.
Zurück zum Zitat Whitaker S (1996) The Forchheimer equation: a theoretical development. Transp Porous Media 25:27–61 Whitaker S (1996) The Forchheimer equation: a theoretical development. Transp Porous Media 25:27–61
22.
Zurück zum Zitat Sener M, Yataganbaba A, Kurtbas I (2016) Forchheimer forced convection in a rectangular channel partially filled with aluminium foam. Exp Therm Fluid Sci 75:162–172 Sener M, Yataganbaba A, Kurtbas I (2016) Forchheimer forced convection in a rectangular channel partially filled with aluminium foam. Exp Therm Fluid Sci 75:162–172
23.
Zurück zum Zitat Ennis-King E, Paterson L (2007) Coupling of geochemical reactions and convective mixing in the long-term geological storage of carbon dioxide. Int J Greenh Gas Control 1:86–93 Ennis-King E, Paterson L (2007) Coupling of geochemical reactions and convective mixing in the long-term geological storage of carbon dioxide. Int J Greenh Gas Control 1:86–93
24.
Zurück zum Zitat Islam AW, Lashgari HR, Sephernoori K (2014) Double diffusive natural convection of \(\text{ CO }_{{2}}\) in a brine saturated geothermal reservoir: study of non-modal growth of perturbations and heterogeneity effects. Geotherm 51:325–336 Islam AW, Lashgari HR, Sephernoori K (2014) Double diffusive natural convection of \(\text{ CO }_{{2}}\) in a brine saturated geothermal reservoir: study of non-modal growth of perturbations and heterogeneity effects. Geotherm 51:325–336
25.
Zurück zum Zitat Ward T, Jensen O, Power H, Riley D (2014) High-Rayleigh-number convection of a reactive solute in a porous medium. J Fluid Mech 760:95–126MathSciNet Ward T, Jensen O, Power H, Riley D (2014) High-Rayleigh-number convection of a reactive solute in a porous medium. J Fluid Mech 760:95–126MathSciNet
26.
Zurück zum Zitat Xin F, Li X-F, Min X, Huai X-L, Cai J, Guo Z-X (2013) Simulation of gas exothermic chemical reaction in porous media reactor with lattice Boltzman method. J Therm Sci 22:42–47 Xin F, Li X-F, Min X, Huai X-L, Cai J, Guo Z-X (2013) Simulation of gas exothermic chemical reaction in porous media reactor with lattice Boltzman method. J Therm Sci 22:42–47
27.
Zurück zum Zitat Shamshuddin D, Sheri Siva Reddy, Anwar Bég O (2019) Oscillatory dissipative conjugate heat and mass transfer in chemically reacting micropolar flow with wall couple stress: a finite element numerical study. Proc Inst Mech Eng Part E J Process Mech Eng 233:48–64 Shamshuddin D, Sheri Siva Reddy, Anwar Bég O (2019) Oscillatory dissipative conjugate heat and mass transfer in chemically reacting micropolar flow with wall couple stress: a finite element numerical study. Proc Inst Mech Eng Part E J Process Mech Eng 233:48–64
28.
Zurück zum Zitat Rashidi MM, Ferdows M, Uddin Md Jashim, Anwar Bég O, Rahimzadeh N (2012) Group theory and differential transform analysis of mixed convective heat and mass transfer from a horizontal surface with chemical reaction effects. Chem Eng Commun 199:1012–1043 Rashidi MM, Ferdows M, Uddin Md Jashim, Anwar Bég O, Rahimzadeh N (2012) Group theory and differential transform analysis of mixed convective heat and mass transfer from a horizontal surface with chemical reaction effects. Chem Eng Commun 199:1012–1043
29.
Zurück zum Zitat Anjali SP, Kandaswamy R (1999) Effects of chemical reaction, heat and mass transfer on laminar flow along a semi-infinite horizontal plate. Heat Mass Transf 35:465–467 Anjali SP, Kandaswamy R (1999) Effects of chemical reaction, heat and mass transfer on laminar flow along a semi-infinite horizontal plate. Heat Mass Transf 35:465–467
30.
Zurück zum Zitat Postelnicu A (2007) Influence of chemical reaction on heat and mass transfer by natural convection from vertical surfaces in porous media considering Soret and Dufour effects. Heat Mass Transf 43:595–602 Postelnicu A (2007) Influence of chemical reaction on heat and mass transfer by natural convection from vertical surfaces in porous media considering Soret and Dufour effects. Heat Mass Transf 43:595–602
31.
Zurück zum Zitat Rashad AM, El-Kabeir SMM (2010) Heat and mass transfer in transient flow by mixed convection boundary layer over a stretching sheet embedded in a porous medium with chemically reactive species. J Porous Media 13:75–85 Rashad AM, El-Kabeir SMM (2010) Heat and mass transfer in transient flow by mixed convection boundary layer over a stretching sheet embedded in a porous medium with chemically reactive species. J Porous Media 13:75–85
32.
Zurück zum Zitat Kandasamy R, Muhaimin I, Hashim R (2008) Thermophoresis and chemical reaction effects on non-Darcy mixed convective heat and mass transfer past a porous wedge with variable viscosity in the presence of suction or injection. Nucl Eng Des 238:2699–2705MATH Kandasamy R, Muhaimin I, Hashim R (2008) Thermophoresis and chemical reaction effects on non-Darcy mixed convective heat and mass transfer past a porous wedge with variable viscosity in the presence of suction or injection. Nucl Eng Des 238:2699–2705MATH
33.
Zurück zum Zitat Zueco J, Anwar Bég O, Tasveer Bég A, Takhar HS (2009) Numeircal study of chemically reactive buoyancy-driven heat and mass transfer across a horizontal cylinder in a high- porosity non-Darcian regime. J Porous Media 12:519–535 Zueco J, Anwar Bég O, Tasveer Bég A, Takhar HS (2009) Numeircal study of chemically reactive buoyancy-driven heat and mass transfer across a horizontal cylinder in a high- porosity non-Darcian regime. J Porous Media 12:519–535
34.
Zurück zum Zitat Nguyen HD, Paik S, Douglass RW, Pop I (1996) Unsteady non-Darcy reaction-driven flow from an anisotropic cylinder in porous media. Chem Eng Sci 51:4963–4977 Nguyen HD, Paik S, Douglass RW, Pop I (1996) Unsteady non-Darcy reaction-driven flow from an anisotropic cylinder in porous media. Chem Eng Sci 51:4963–4977
35.
Zurück zum Zitat Zanchini E (1998) Effect of viscous dissipation on mixed convection in a vertical channel with boundary conditions of the third kind. Int J Heat Mass Transf 41:3949–3959MATH Zanchini E (1998) Effect of viscous dissipation on mixed convection in a vertical channel with boundary conditions of the third kind. Int J Heat Mass Transf 41:3949–3959MATH
36.
Zurück zum Zitat Umavathi JC, Prathap Kumar J, Sultana J (2012) Mixed convection flow in a vertical channel with boundary conditions of the third kind in the presence of heat source/sink. Appl Math Mech 33:1015–1034MathSciNetMATH Umavathi JC, Prathap Kumar J, Sultana J (2012) Mixed convection flow in a vertical channel with boundary conditions of the third kind in the presence of heat source/sink. Appl Math Mech 33:1015–1034MathSciNetMATH
37.
Zurück zum Zitat Umavathi JC, Veershetty Snatosh (2012) Non-Darcy mixed convection in a vertical porous channel with boundary conditions of third kind. Transp Porous Media 95:111–131MathSciNet Umavathi JC, Veershetty Snatosh (2012) Non-Darcy mixed convection in a vertical porous channel with boundary conditions of third kind. Transp Porous Media 95:111–131MathSciNet
38.
Zurück zum Zitat Leng W, Zhong S (2014) Viscous heating, adiabatic heating and energetic consistency in compressible mantle convection. Geophys J Int 173:693–702 Leng W, Zhong S (2014) Viscous heating, adiabatic heating and energetic consistency in compressible mantle convection. Geophys J Int 173:693–702
39.
Zurück zum Zitat Norouzi M, Dorrani S, Shokri H, Anwar Bég O (2019) CFD simulation of viscous dissipation effects on miscible thermo-viscous fingering instability in porous media. Int J Heat Mass Transf 129:212–223 Norouzi M, Dorrani S, Shokri H, Anwar Bég O (2019) CFD simulation of viscous dissipation effects on miscible thermo-viscous fingering instability in porous media. Int J Heat Mass Transf 129:212–223
40.
Zurück zum Zitat Muthucumaraswamy R, Ganesan P (2002) Natural convection on a moving isothermal vertical plate with chemical reaxtion. J Eng Phys Thermophys 75:113–119 Muthucumaraswamy R, Ganesan P (2002) Natural convection on a moving isothermal vertical plate with chemical reaxtion. J Eng Phys Thermophys 75:113–119
41.
Zurück zum Zitat Umavathi JC, Sheremet MA (2016) Mixed convection flow of an electrically conducting fluid in a vertical channel using Robin boundary conditions with heat source or sink. Eur J Mech B Fluids 55:132–145MathSciNetMATH Umavathi JC, Sheremet MA (2016) Mixed convection flow of an electrically conducting fluid in a vertical channel using Robin boundary conditions with heat source or sink. Eur J Mech B Fluids 55:132–145MathSciNetMATH
42.
Zurück zum Zitat Anwar Bég O, Md Faisa M, Basir Uddin MJ, Md Ismail AI (2017) Numerical study of slip effects on asymmetric bio convective nanofluid flow in a porous micro channel with an expanding/contracting upper wall using Buongiorno’s model. J Mech Med Biol 17:1750059.1–1750059.28 Anwar Bég O, Md Faisa M, Basir Uddin MJ, Md Ismail AI (2017) Numerical study of slip effects on asymmetric bio convective nanofluid flow in a porous micro channel with an expanding/contracting upper wall using Buongiorno’s model. J Mech Med Biol 17:1750059.1–1750059.28
43.
Zurück zum Zitat Anwar Bég O, Tasveer Bég A, Karim I, Khan MS, Alam MM, Ferdows M, Shamshuddin M (2019) Numerical study of magneto-convective heat and mass transfer from inclined surface with Soret diffusion and heat generation effects: a model for ocean magnetohydrodynamic energy generator fluid dynamics. Chin J Phys 60:167–179 Anwar Bég O, Tasveer Bég A, Karim I, Khan MS, Alam MM, Ferdows M, Shamshuddin M (2019) Numerical study of magneto-convective heat and mass transfer from inclined surface with Soret diffusion and heat generation effects: a model for ocean magnetohydrodynamic energy generator fluid dynamics. Chin J Phys 60:167–179
44.
Zurück zum Zitat Gebhart B, Jaluria Y, Mahajan RL, Sammakia B (1988) Buoyancy-induced flows and transport. Hemisphere, WashingtonMATH Gebhart B, Jaluria Y, Mahajan RL, Sammakia B (1988) Buoyancy-induced flows and transport. Hemisphere, WashingtonMATH
45.
Zurück zum Zitat Lai FC, Kulacki FA (1987) Non-Darcy convection from horizontal impermeable surfaces in saturated porous media. Int J Heat Mass Transf 30:2189–2192 Lai FC, Kulacki FA (1987) Non-Darcy convection from horizontal impermeable surfaces in saturated porous media. Int J Heat Mass Transf 30:2189–2192
Metadaten
Titel
Numerical study of double-diffusive dissipative reactive convective flow in an open vertical duct containing a non-Darcy porous medium with Robin boundary conditions
verfasst von
J. C. Umavathi
O. Anwar Bég
Publikationsdatum
08.10.2019
Verlag
Springer Netherlands
Erschienen in
Journal of Engineering Mathematics / Ausgabe 1/2019
Print ISSN: 0022-0833
Elektronische ISSN: 1573-2703
DOI
https://doi.org/10.1007/s10665-019-10022-w

Weitere Artikel der Ausgabe 1/2019

Journal of Engineering Mathematics 1/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.