Skip to main content
Erschienen in: Flow, Turbulence and Combustion 3-4/2017

04.07.2017

Numerical Study of Smoothly Perturbed Shocks in the Newtonian Limit

Erschienen in: Flow, Turbulence and Combustion | Ausgabe 3-4/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Previous weakly nonlinear analyses of strong shocks in the Newtonian limit have shown that the main characteristics of the cellular pattern of detonations, namely the network of triple points propagating in the transverse direction, are associated with nonlinear mechanisms which are inherent to the leading shock (Clavin and Denet, Phys. Rev. Lett. 88(4), 044,502, 2002; Clavin, J. Fluid Mech. 721, 324–339, 2013). Motivated by this theoretical analysis, experimental and numerical studies have been conducted on a smoothly perturbed Mach 1.5 shock in air, reflected from a sinusoidal wall of small amplitude (Jourdan et al., Shock Waves 13(6), 501–504, 2004; Denet et al., Combust Sci. Technol. 187, 296–323, 2015; Lodato et al., J. Fluid Mech. 789, 221–258, 2016). Under such flow conditions, the reflected shock is relatively weak and the Newtonian limit, used in the above mentioned analysis, is rather far from being met. Despite of this, the theoretical results concerning the nonlinear dynamics of the shock front were, for the most part, confirmed. In an effort to get closer to the conditions of the theoretical analysis, namely strong shocks in the Newtonian limit, a similar numerical analysis is performed in the present study where the incident Mach number is increased up to 5 and the specific heat ratio is decreased down to 1.15, leading to reflected shocks Mach numbers of about 3.2. This provides additional evidence about the main driving mechanism behind the structure of cellular detonations. Theoretical predictions regarding the spontaneous formation and transverse velocity of the triple points are further confirmed. In particular, significant improvements are observed in reproducing the theoretically predicted trajectories of the triple points. As a result of the increased Mach number of the reflected shock, stronger vortex sheets are formed within the shocked gases. This enables to better assess the impact of the molecular viscosity—a previously left open question—but also to highlight similarities with cellular detonations on a wider range of heat releases.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
2.
Zurück zum Zitat Denet, B., Biamino, L., Lodato, G., Vervisch, L., Clavin, P.: Model equation for the dynamics of wrinkled shock waves. comparison with DNS and experiments. Combust. Sci. Technol. 187, 296–323 (2015). doi:10.1080/00102202.2014.973494 CrossRef Denet, B., Biamino, L., Lodato, G., Vervisch, L., Clavin, P.: Model equation for the dynamics of wrinkled shock waves. comparison with DNS and experiments. Combust. Sci. Technol. 187, 296–323 (2015). doi:10.​1080/​00102202.​2014.​973494 CrossRef
3.
Zurück zum Zitat Lodato, G., Vervisch, L., Clavin, P.: Direct numerical simulation of shock wavy-wall interaction: analysis of cellular shock structures and flow patterns. J. Fluid Mech. 789, 221–258 (2016). doi:10.1017/jfm.2015.731 CrossRef Lodato, G., Vervisch, L., Clavin, P.: Direct numerical simulation of shock wavy-wall interaction: analysis of cellular shock structures and flow patterns. J. Fluid Mech. 789, 221–258 (2016). doi:10.​1017/​jfm.​2015.​731 CrossRef
4.
Zurück zum Zitat Jourdan, G., Houas, L., Schwaederlé, L., Layes, G., Carrey, R., Diaz, F.: A new variable inclination shock tube for multiple investigations. Shock Waves 13(6), 501–504 (2004)CrossRef Jourdan, G., Houas, L., Schwaederlé, L., Layes, G., Carrey, R., Diaz, F.: A new variable inclination shock tube for multiple investigations. Shock Waves 13(6), 501–504 (2004)CrossRef
5.
Zurück zum Zitat Gelfand, B., Khomik, S., Bartenev, A., Medvedev, S., Grönig, H., Olivier, H.: Detonation and deflagration initiation at the focusing of shock waves in combustible gaseous mixture. Shock Waves 10(3), 197–204 (2000)CrossRefMATH Gelfand, B., Khomik, S., Bartenev, A., Medvedev, S., Grönig, H., Olivier, H.: Detonation and deflagration initiation at the focusing of shock waves in combustible gaseous mixture. Shock Waves 10(3), 197–204 (2000)CrossRefMATH
6.
Zurück zum Zitat Izumi, K., Aso, S., Nishida, M.: Experimental and computational studies focusing processes of shock waves reflected from parabolic reflectors. Shock Waves 3(3), 213–222 (1994)CrossRef Izumi, K., Aso, S., Nishida, M.: Experimental and computational studies focusing processes of shock waves reflected from parabolic reflectors. Shock Waves 3(3), 213–222 (1994)CrossRef
7.
Zurück zum Zitat Kowalczyk, P., Płatkowski, T., Waluś, W.: Focusing of a shock wave in a rarefied gas: a numerical study. Shock Waves 10(2), 77–93 (2000)CrossRefMATH Kowalczyk, P., Płatkowski, T., Waluś, W.: Focusing of a shock wave in a rarefied gas: a numerical study. Shock Waves 10(2), 77–93 (2000)CrossRefMATH
8.
Zurück zum Zitat Ben-Dor, G.: Shock Wave Reflection Phenomena. Springer (2007) Ben-Dor, G.: Shock Wave Reflection Phenomena. Springer (2007)
9.
Zurück zum Zitat Skews, B.W., Kleine, H.: Flow features resulting from shock wave impact on a cylindrical cavity. J. Fluid Mech. 580, 481–493 (2007)CrossRefMATH Skews, B.W., Kleine, H.: Flow features resulting from shock wave impact on a cylindrical cavity. J. Fluid Mech. 580, 481–493 (2007)CrossRefMATH
10.
Zurück zum Zitat Taieb, D., Ribert, G., Hadjadj, A.: Numerical simulations of shock focusing over concave surfaces. AIAA J. 48(8), 1739–1747 (2010)CrossRef Taieb, D., Ribert, G., Hadjadj, A.: Numerical simulations of shock focusing over concave surfaces. AIAA J. 48(8), 1739–1747 (2010)CrossRef
11.
Zurück zum Zitat Shadloo, M., Hadjadj, A., Chaudhuri, A.: On the onset of postshock flow instabilities over concave surfaces. Phys. Fluids 26(7), 076,101 (2014)CrossRef Shadloo, M., Hadjadj, A., Chaudhuri, A.: On the onset of postshock flow instabilities over concave surfaces. Phys. Fluids 26(7), 076,101 (2014)CrossRef
12.
Zurück zum Zitat Taki, S., Fujiwara, T.: Numerical simulation of triple shock behavior of gaseous detonation. In: 18th Symposium (international) on Combustion, vol. 18, pp. 1671–1681. Elsevier (1981) Taki, S., Fujiwara, T.: Numerical simulation of triple shock behavior of gaseous detonation. In: 18th Symposium (international) on Combustion, vol. 18, pp. 1671–1681. Elsevier (1981)
13.
Zurück zum Zitat Kailasanath, K., Oran, E., Boris, J., Young, T.: Determination of detonation cell size and the role of transverse waves in two-dimensional detonations. Comput. Fluids 61(3), 199–209 (1985) Kailasanath, K., Oran, E., Boris, J., Young, T.: Determination of detonation cell size and the role of transverse waves in two-dimensional detonations. Comput. Fluids 61(3), 199–209 (1985)
14.
Zurück zum Zitat Guirguis, R., Oran, E., Kailasanath, K.: Numerical simulations of the cellular structure of detonations in liquid nitromethane—regularity of the cell structure. Comput. Fluids 65(3), 339–365 (1986) Guirguis, R., Oran, E., Kailasanath, K.: Numerical simulations of the cellular structure of detonations in liquid nitromethane—regularity of the cell structure. Comput. Fluids 65(3), 339–365 (1986)
15.
Zurück zum Zitat Bourlioux, A., Majda, A.J.: Theoretical and numerical structure for unstable two-dimensional detonations. Comput. Fluids 90(3), 211–229 (1992) Bourlioux, A., Majda, A.J.: Theoretical and numerical structure for unstable two-dimensional detonations. Comput. Fluids 90(3), 211–229 (1992)
16.
Zurück zum Zitat Oran, E., Weber, J., Stefaniw, E., Lefebvre, M., Anderson, J.: A numerical study of a two-dimensional h2-o22-ar detonation using a detailed chemical reaction model. Comput. Fluids 113(1), 147–163 (1998) Oran, E., Weber, J., Stefaniw, E., Lefebvre, M., Anderson, J.: A numerical study of a two-dimensional h2-o22-ar detonation using a detailed chemical reaction model. Comput. Fluids 113(1), 147–163 (1998)
17.
Zurück zum Zitat Gamezo, V.N., Desbordes, D., Oran, E.S.: Formation and evolution of two-dimensional cellular detonations. Comput. Fluids 116(1), 154–165 (1999) Gamezo, V.N., Desbordes, D., Oran, E.S.: Formation and evolution of two-dimensional cellular detonations. Comput. Fluids 116(1), 154–165 (1999)
18.
Zurück zum Zitat Kopriva, D., Kolias, J.: A conservative staggered-grid Chebyshev multidomain method for compressible flows. J. Comput. Phys. 125(1), 244–261 (1996)MathSciNetCrossRefMATH Kopriva, D., Kolias, J.: A conservative staggered-grid Chebyshev multidomain method for compressible flows. J. Comput. Phys. 125(1), 244–261 (1996)MathSciNetCrossRefMATH
19.
Zurück zum Zitat Sun, Y., Wang, Z., Liu, Y.: High-order multidomain spectral difference method for the Navier-Stokes equations on unstructured hexahedral grids. Commun. Comput. Phys. 2(2), 310–333 (2007)MathSciNetMATH Sun, Y., Wang, Z., Liu, Y.: High-order multidomain spectral difference method for the Navier-Stokes equations on unstructured hexahedral grids. Commun. Comput. Phys. 2(2), 310–333 (2007)MathSciNetMATH
20.
Zurück zum Zitat Jameson, A.: A proof of the stability of the spectral difference method for all orders of accuracy. J. Sci. Comput. 45(1), 348–358 (2010)MathSciNetCrossRefMATH Jameson, A.: A proof of the stability of the spectral difference method for all orders of accuracy. J. Sci. Comput. 45(1), 348–358 (2010)MathSciNetCrossRefMATH
21.
Zurück zum Zitat Jameson, A., Lodato, G.: A note on the numerical dissipation from high-order discontinuous finite element schemes. Comput. Fluids 98, 186–195 (2014). doi:10.1016/j.compfluid.2014.01.016. 12th USNCCM mini-symposium of High-Order Methods for Computational Fluid Dynamics – A special issue dedicated to the 80th birthday of Professor Antony JamesonMathSciNetCrossRef Jameson, A., Lodato, G.: A note on the numerical dissipation from high-order discontinuous finite element schemes. Comput. Fluids 98, 186–195 (2014). doi:10.​1016/​j.​compfluid.​2014.​01.​016. 12th USNCCM mini-symposium of High-Order Methods for Computational Fluid Dynamics – A special issue dedicated to the 80th birthday of Professor Antony JamesonMathSciNetCrossRef
23.
Zurück zum Zitat Persson, P.O., Peraire, J.: Sub-cell shock capturing for discontinuous Galerkin methods. In: AIAA P 2006-112:1–13, 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, Jan. 9–12, 2006 (2006) Persson, P.O., Peraire, J.: Sub-cell shock capturing for discontinuous Galerkin methods. In: AIAA P 2006-112:1–13, 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, Jan. 9–12, 2006 (2006)
24.
Zurück zum Zitat Persson, P.O.: Shock capturing for high-order discontinuous galerkin simulation of transient flow problems. In: AIAA P 2013-3061:1–9, 21st AIAA Computational Fluid Dynamics Conference, San Diego, CA, Jun. 24–27, 2013 (2013) Persson, P.O.: Shock capturing for high-order discontinuous galerkin simulation of transient flow problems. In: AIAA P 2013-3061:1–9, 21st AIAA Computational Fluid Dynamics Conference, San Diego, CA, Jun. 24–27, 2013 (2013)
25.
Zurück zum Zitat Zhang, X., Shu, C.W.: On positivity-preserving high order discontinuous Galerkin schemes for compressible euler equations on rectangular meshes. J. Comput. Phys. 229(23), 8918–8934 (2010)MathSciNetCrossRefMATH Zhang, X., Shu, C.W.: On positivity-preserving high order discontinuous Galerkin schemes for compressible euler equations on rectangular meshes. J. Comput. Phys. 229(23), 8918–8934 (2010)MathSciNetCrossRefMATH
26.
Zurück zum Zitat Poinsot, T., Lele, S.: Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101, 104–129 (1992)MathSciNetCrossRefMATH Poinsot, T., Lele, S.: Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101, 104–129 (1992)MathSciNetCrossRefMATH
27.
Zurück zum Zitat Lodato, G., Ham, F., Pitsch, H.: Optimal inclusion of transverse effects in nonreflecting outflow boundary condition. AIAA J. 50(6), 1291–1306 (2012)CrossRef Lodato, G., Ham, F., Pitsch, H.: Optimal inclusion of transverse effects in nonreflecting outflow boundary condition. AIAA J. 50(6), 1291–1306 (2012)CrossRef
28.
Zurück zum Zitat Courant, R., Friedrichs, K.: Supersonic Flow and Shock Waves. Interscience Publishers (1948) Courant, R., Friedrichs, K.: Supersonic Flow and Shock Waves. Interscience Publishers (1948)
29.
Zurück zum Zitat Clavin, P., Denet, B.: Diamond patterns in the cellular front of an overdriven detonation. Phys. Rev. Lett. 88(4), 044,502 (2002)CrossRef Clavin, P., Denet, B.: Diamond patterns in the cellular front of an overdriven detonation. Phys. Rev. Lett. 88(4), 044,502 (2002)CrossRef
Metadaten
Titel
Numerical Study of Smoothly Perturbed Shocks in the Newtonian Limit
Publikationsdatum
04.07.2017
Erschienen in
Flow, Turbulence and Combustion / Ausgabe 3-4/2017
Print ISSN: 1386-6184
Elektronische ISSN: 1573-1987
DOI
https://doi.org/10.1007/s10494-017-9830-1

Weitere Artikel der Ausgabe 3-4/2017

Flow, Turbulence and Combustion 3-4/2017 Zur Ausgabe

EditorialNotes

Preface

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.