Skip to main content
Erschienen in: Microsystem Technologies 1/2012

01.01.2012 | Technical Paper

Numerical study of the flow-structure interactions in an air- or helium-filled simulated hard disk drive

verfasst von: Sae Woong Kil, Joseph A. C. Humphrey, Hossein Haj-Hariri

Erschienen in: Microsystem Technologies | Ausgabe 1/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Since its invention, the Hard Disk Drive (HDD) has been the most widely-used device for data storage. Recently, the volume of data is getting larger and the corresponding rotation speed of the HDD is increasing to allow for better data transfer. The decreasing size of the disk is increasing the density of data on the disk surface. As a result, the positioning accuracy of the Suspension Slider Unit (SSU), where the magnetic head is mounted, is the problem that has to be overcome for better performance of the HDD. Additionally, the increased rotating speed of the disk induces unsteady flow between each pair of disks. This unsteady flow becomes turbulent around the SSU and induces vibrations on the SSU which deteriorate the performance of the HDD. There have been many investigations to understand the fluid mechanics phenomena inside the HDD filled with air. Additionally, many modifications have been tried to minimize the flow-induced vibration on the SSU by placing a blockage upstream of the arm to generate a low velocity region. However, none of these investigations have explored the effect of using gases other than air. In this work, the flow physics in the HDD is investigated numerically with the drive filled with air or helium. Numerical analyses were performed using the commercial code (ANSYS/CFX) with an expanded 2 × model simulating Seagate cheetah 2.5-inch drive. Despite obvious un-addressed issues in sealing the HDD, the unsteady characteristics of the flow are dissipated sufficiently faster in helium than in air so as to warrant further studies addressing the more practical issues of working with helium. Of particular importance is the unsteady flow around the SSU. This leads to lower levels of flow-induced vibration in the case of helium flow. As such, HDD performance may be improved by using helium to improve the dynamics of the HDD at higher rotation speeds. For both air- and helium-filled drives, calculations have been performed with two different locations of the SSU and two different angular velocities, 1,000 and 3,000 rpm corresponding to 5,000 and 15,000 rpm in 3.5-inch commercial drive. Not only is it shown that the helium-filled drive suffers lower positioning errors, but also the underlying flow physics responsible for such improvement are explained.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abrahamson SD, Koga DJ, Eaton JK (1988) The flow between shrouded co-rotating disks. Phys Fluids 1(2):241–251 Abrahamson SD, Koga DJ, Eaton JK (1988) The flow between shrouded co-rotating disks. Phys Fluids 1(2):241–251
Zurück zum Zitat Aruga K, Suwa M, Shimizu K, Watanaba T (2007) A study on positioning error caused by flow induced vibration using helium-filled hard disk drives. IEEE Trans Magn 43(9):3750–3755CrossRef Aruga K, Suwa M, Shimizu K, Watanaba T (2007) A study on positioning error caused by flow induced vibration using helium-filled hard disk drives. IEEE Trans Magn 43(9):3750–3755CrossRef
Zurück zum Zitat Barbier C, Humphrey JAC, Maslen E (2006) Experimental study of the flow in a simulated hard disk drive. J Fluid Eng 128:1–11CrossRef Barbier C, Humphrey JAC, Maslen E (2006) Experimental study of the flow in a simulated hard disk drive. J Fluid Eng 128:1–11CrossRef
Zurück zum Zitat Coughlin TM (2001) High density hard drive trends in the USA. J Magn Soc 25(3):111–120 Coughlin TM (2001) High density hard drive trends in the USA. J Magn Soc 25(3):111–120
Zurück zum Zitat Davidson PA (2004) Turbulence. An introduction for scientists and engineers. Oxford University Press, OxfordMATH Davidson PA (2004) Turbulence. An introduction for scientists and engineers. Oxford University Press, OxfordMATH
Zurück zum Zitat Greenspan HP (1968) The theory of rotating fluids. Cambridge University Press, LondonMATH Greenspan HP (1968) The theory of rotating fluids. Cambridge University Press, LondonMATH
Zurück zum Zitat Herrero J, Giralt F, Humphrey JAC (1999) Influence of the geometry on the structure of the flow between a pair of co-rotating disks. Phys Fluids 11(1):88–96CrossRefMATHMathSciNet Herrero J, Giralt F, Humphrey JAC (1999) Influence of the geometry on the structure of the flow between a pair of co-rotating disks. Phys Fluids 11(1):88–96CrossRefMATHMathSciNet
Zurück zum Zitat Hirono Y, Arisaka T, Nishijima N, Shimizu T, Nakamura S, Masuda H (2004) Flow-induced vibration reduction in HDD by using a spoiler. IEEE Trans Magn 40(4):3168–3170CrossRef Hirono Y, Arisaka T, Nishijima N, Shimizu T, Nakamura S, Masuda H (2004) Flow-induced vibration reduction in HDD by using a spoiler. IEEE Trans Magn 40(4):3168–3170CrossRef
Zurück zum Zitat Iglesias I, Humphrey JAC (1998) Two and three-dimensional laminar flows between disks co-rotating in a fixed cylindrical enclosure. Int J Numer Methods Fluid 26:581–603CrossRefMATH Iglesias I, Humphrey JAC (1998) Two and three-dimensional laminar flows between disks co-rotating in a fixed cylindrical enclosure. Int J Numer Methods Fluid 26:581–603CrossRefMATH
Zurück zum Zitat Ikegawa M, Hirono Y, Mukai H, Kaiho M (2006) Decreasing airflow velocity in hard disk drives with a spoiler and bypass. IEEE Trans Magn 42(10):2594–2596CrossRef Ikegawa M, Hirono Y, Mukai H, Kaiho M (2006) Decreasing airflow velocity in hard disk drives with a spoiler and bypass. IEEE Trans Magn 42(10):2594–2596CrossRef
Zurück zum Zitat Vanyo JP (1993) Rotating fluids in engineering and science. Butterworth-Heinemann, UK Vanyo JP (1993) Rotating fluids in engineering and science. Butterworth-Heinemann, UK
Zurück zum Zitat Kaneko S, Nishihara T, Watanabe T (2007) Aerodynamic characteristics of carriage arm equipped on hard magnetic disks. Microsyst Technol 13:1297–1306CrossRef Kaneko S, Nishihara T, Watanabe T (2007) Aerodynamic characteristics of carriage arm equipped on hard magnetic disks. Microsyst Technol 13:1297–1306CrossRef
Zurück zum Zitat Kazemi M (2007) Numerical analysis of off-track vibration of head gimbal assembly in hard disk drive caused by the airflow. Microsyst Technol 13:1201–1209CrossRef Kazemi M (2007) Numerical analysis of off-track vibration of head gimbal assembly in hard disk drive caused by the airflow. Microsyst Technol 13:1201–1209CrossRef
Zurück zum Zitat Kirpekar S, Bogy DB (2006) A study of the efficacy of flow mitigation devices in hard disk drives. IEEE Trans Magn 42(6):1716–1729CrossRef Kirpekar S, Bogy DB (2006) A study of the efficacy of flow mitigation devices in hard disk drives. IEEE Trans Magn 42(6):1716–1729CrossRef
Zurück zum Zitat Kubotera H, Tsuda N, Tatewaki M, Maruyama T (2002) Aerodynamic vibration mechanism of HDD arms predicted by unsteady numerical simulations. IEEE Trans Magn 38(5):2201–2203CrossRef Kubotera H, Tsuda N, Tatewaki M, Maruyama T (2002) Aerodynamic vibration mechanism of HDD arms predicted by unsteady numerical simulations. IEEE Trans Magn 38(5):2201–2203CrossRef
Zurück zum Zitat Kundu PK, Cohen IM (2004) Fluid mechanics, 3rd edn. Elsevier academic press, USA Kundu PK, Cohen IM (2004) Fluid mechanics, 3rd edn. Elsevier academic press, USA
Zurück zum Zitat Shimizu H, Tokuyama M, Imai S, Nakamura S, Sakai K (2001) Study of aerodynamic characteristics in hard disk drives by numerical simulation. IEEE Trans Magn 37(2):831–836CrossRef Shimizu H, Tokuyama M, Imai S, Nakamura S, Sakai K (2001) Study of aerodynamic characteristics in hard disk drives by numerical simulation. IEEE Trans Magn 37(2):831–836CrossRef
Zurück zum Zitat Shimizu H, Shimizu T, Tokuyama M, Masuda H, Nakamura S (2003) Numerical simulation of positioning error caused by air-flow-induced vibration of head gimbals assembly in hard disk drive. IEEE Trans Magn 39(2):806–811CrossRef Shimizu H, Shimizu T, Tokuyama M, Masuda H, Nakamura S (2003) Numerical simulation of positioning error caused by air-flow-induced vibration of head gimbals assembly in hard disk drive. IEEE Trans Magn 39(2):806–811CrossRef
Zurück zum Zitat Tatewaki M, Tuada N, Maruyama T (2001) An analysis of disk flutter in hard disk drives in aerodynamic simulations. IEEE Trans Magn 37(2):842–846CrossRef Tatewaki M, Tuada N, Maruyama T (2001) An analysis of disk flutter in hard disk drives in aerodynamic simulations. IEEE Trans Magn 37(2):842–846CrossRef
Zurück zum Zitat Usry WR, Humphrey JAC, Greif R (1993) Unsteady flow in the obstructed space between disks corotating in a cylindrical enclosure. J Fluid Eng 115:620–626CrossRef Usry WR, Humphrey JAC, Greif R (1993) Unsteady flow in the obstructed space between disks corotating in a cylindrical enclosure. J Fluid Eng 115:620–626CrossRef
Zurück zum Zitat Webster DR, Schuler CA, Humphrey JAC (1995) Unsteady laminar flow between a pair of disks co-rotating in a fixed cylindrical enclosure. Phys Fluids 7:1225–1240CrossRefMATH Webster DR, Schuler CA, Humphrey JAC (1995) Unsteady laminar flow between a pair of disks co-rotating in a fixed cylindrical enclosure. Phys Fluids 7:1225–1240CrossRefMATH
Zurück zum Zitat Yip TH, Tan CK, Kuan YK (2006) Behavior of spiral flow structures along the trailing edges of E-block arms under increasing airflow velocities. IEEE Trans Magn 42(10):2591–2593CrossRef Yip TH, Tan CK, Kuan YK (2006) Behavior of spiral flow structures along the trailing edges of E-block arms under increasing airflow velocities. IEEE Trans Magn 42(10):2591–2593CrossRef
Zurück zum Zitat Zhang QD, Tan CS, Sundaravadivelu K, Suriadi MA, Chin GL, Yip TH, Ong EH, Liu NY (2010) Mitigation of flow induced vibration of head gimbal assembly. Microsyst Technol 16:213–219CrossRef Zhang QD, Tan CS, Sundaravadivelu K, Suriadi MA, Chin GL, Yip TH, Ong EH, Liu NY (2010) Mitigation of flow induced vibration of head gimbal assembly. Microsyst Technol 16:213–219CrossRef
Metadaten
Titel
Numerical study of the flow-structure interactions in an air- or helium-filled simulated hard disk drive
verfasst von
Sae Woong Kil
Joseph A. C. Humphrey
Hossein Haj-Hariri
Publikationsdatum
01.01.2012
Verlag
Springer-Verlag
Erschienen in
Microsystem Technologies / Ausgabe 1/2012
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-011-1375-y

Weitere Artikel der Ausgabe 1/2012

Microsystem Technologies 1/2012 Zur Ausgabe

Neuer Inhalt