Skip to main content

2019 | OriginalPaper | Buchkapitel

Numerical Study on a Cycle of Liquid Pulse Detonation Engines

verfasst von : Van Bo Nguyen, Quoc Thien Phan, Jiun-Ming Li, Boo Cheong Khoo, Chiang Juay Teo

Erschienen in: 31st International Symposium on Shock Waves 2

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A typical cycle of a liquid pulse detonation engine (PDE) often involves three main processes, which are injection and evaporation process, deflagration-to-detonation transition process (DDT), and detonation propagation process. These three processes often include a number of complex subprocesses, which strongly influence the performance characteristics of the engine. Thus, it is important to understand the physical and chemical insights of these processes in an operating cycle of the liquid PDE to improve the engine performance characteristics. In this study, numerical simulations are performed to simulate for the complete operating cycle of the liquid PDE. The numerical method is developed based on the Eulerian–Lagrangian approaches. Particularly, the continuous vapour phase is described using Navier–Stokes equations in the Eulerian frame of reference, while the liquid fuel droplets are modelled using discrete phase model in the Lagrangian frame of reference. The liquid fuel is injected into the detonation chamber through a cone nozzle injector model. The evaporation process of the liquid droplet is modelled using the D-square law. The density-based solver with a shock-capturing scheme is employed to simulate for both the DDT and detonation propagation processes. The combustion process is modelled through the reduced chemical kinetic model of Jet-A fuel. The obtained numerical results are in good agreement with both the experimental and numerical data. Both physical and chemical insights of the operating cycle are investigated. The obtained results show that the evaporation process and mixing process play a key role in the homogeneity of the fuel/air vapour mixture. The deflagration wave can successfully transit to detonation wave for a certain range of injected fuel mass flow rate. The DDT length strongly depends on the temperature of incoming airflow as well as liquid fuel mass flow rate.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
4.
Zurück zum Zitat C.M. Brophy et al., High-Speed Deflagration and Detonation (ELEX-KM Publishers, Moscow, 2001), p. 207 C.M. Brophy et al., High-Speed Deflagration and Detonation (ELEX-KM Publishers, Moscow, 2001), p. 207
5.
Zurück zum Zitat Schauer, F.R, et al., AIAA paper, 2005-1343 (2005) Schauer, F.R, et al., AIAA paper, 2005-1343 (2005)
7.
Zurück zum Zitat Carter, J.D., Lu, F.K., AIAA paper, 2011-6089 (2011) Carter, J.D., Lu, F.K., AIAA paper, 2011-6089 (2011)
11.
13.
16.
Zurück zum Zitat A.B. Liu, D. Mather, R.D. Reitz, SAE Technical Paper 930072, SAE, 1993 A.B. Liu, D. Mather, R.D. Reitz, SAE Technical Paper 930072, SAE, 1993
17.
Zurück zum Zitat P. J. O’Rourke, PhD thesis, Princeton University, Princeton, 1981 P. J. O’Rourke, PhD thesis, Princeton University, Princeton, 1981
18.
Zurück zum Zitat W.E. Ranz, W.R. Marshall Jr., Part I, II. Chem. Eng. Prog. 48(3), 141–146 (1952) W.E. Ranz, W.R. Marshall Jr., Part I, II. Chem. Eng. Prog. 48(3), 141–146 (1952)
20.
22.
Metadaten
Titel
Numerical Study on a Cycle of Liquid Pulse Detonation Engines
verfasst von
Van Bo Nguyen
Quoc Thien Phan
Jiun-Ming Li
Boo Cheong Khoo
Chiang Juay Teo
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-319-91017-8_9

    Premium Partner