Skip to main content

2023 | OriginalPaper | Buchkapitel

Numerical Treatment for a Coupled System of Singularly Perturbed Reaction–Diffusion Equations with Robin Boundary Conditions and Having Boundary and Interior Layers

verfasst von : Sheetal Chawla, S. Chandra Sekhara Rao

Erschienen in: Frontiers in Industrial and Applied Mathematics

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Das Kapitel befasst sich mit der numerischen Behandlung eines gekoppelten Systems einzigartig gestörter Reaktions-Diffusionsgleichungen mit Robin-Grenzbedingungen und geht auf die Herausforderungen ein, die Grenz- und Innenschichten darstellen. Es führt ein hybrides Differenzschema in Kombination mit einer kubischen Spline-Technik auf einem wohldefinierten, stückweise einheitlichen Schischkin-Netz ein, das eine nahezu parametereinheitliche Konvergenz zweiter Ordnung erzielt. Die Lösung wird in glatte und Schichtkomponenten zerlegt, deren Derivate detailliert geschätzt werden. Das Kapitel enthält auch eine Konvergenzanalyse und numerische Ergebnisse, die die theoretischen Ergebnisse bestätigen und die Effizienz und Anwendbarkeit der Methode im Umgang mit komplexen Störungsproblemen aufzeigen.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Basha, P.M., Shanthi, V.: A uniformly convergent scheme for a system of two coupled singularly perturbed reaction–diffusion Robin type boundary value problems with discontinuous source term. Am. J. Numer. Anal. 3(2), 39–48 (2015) Basha, P.M., Shanthi, V.: A uniformly convergent scheme for a system of two coupled singularly perturbed reaction–diffusion Robin type boundary value problems with discontinuous source term. Am. J. Numer. Anal. 3(2), 39–48 (2015)
2.
Zurück zum Zitat Chawla, S., Singh, J.: Urmil: an analysis of a robust convergent method for a Singularly perturbed linear system of reaction-diffusion type having non-smooth data. Int. J. Comput. Methods 19(1), 2150056 (2022)CrossRefMATH Chawla, S., Singh, J.: Urmil: an analysis of a robust convergent method for a Singularly perturbed linear system of reaction-diffusion type having non-smooth data. Int. J. Comput. Methods 19(1), 2150056 (2022)CrossRefMATH
3.
Zurück zum Zitat Das, P., Natesan N.: Higher-order parameter uniform convergent schemes for Robin type reaction-diffusion problems using adaptively generated grid. Int. J. Comput. 9(4), 1250052(27) (2012) Das, P., Natesan N.: Higher-order parameter uniform convergent schemes for Robin type reaction-diffusion problems using adaptively generated grid. Int. J. Comput. 9(4), 1250052(27) (2012)
4.
Zurück zum Zitat Das, P., Natesan, N.: A uniformly convergent hybrid scheme for singularly perturbed system of reaction-diffusion Robin type boundary-value probelm. J. Appl. Math. Comput. 41, 447–471 (2013)CrossRefMATH Das, P., Natesan, N.: A uniformly convergent hybrid scheme for singularly perturbed system of reaction-diffusion Robin type boundary-value probelm. J. Appl. Math. Comput. 41, 447–471 (2013)CrossRefMATH
5.
Zurück zum Zitat Falco, C. de., O’Riordan, E.: Interior Layers in a reaction-diffusion equation with a discontinuous diffusion coefficient. Int. J. Numer. Anal. Model. 7, 444–461 (2010) Falco, C. de., O’Riordan, E.: Interior Layers in a reaction-diffusion equation with a discontinuous diffusion coefficient. Int. J. Numer. Anal. Model. 7, 444–461 (2010)
6.
Zurück zum Zitat Farrell, P.A., Hegarty, A.F., Miller, J.J.H., O’Riordan, E., and Shishkin, G.I.: Singularly perturbed differential equations with discontinuous source terms. In: Miller, J.J.H., Shishkin, G.I., Vulkov, L. (eds.) Analytical and Numerical Methods for Convection-Dominated and Singularly Perturbed Problems, Nova Science, New York, pp. 23–32 (2000) Farrell, P.A., Hegarty, A.F., Miller, J.J.H., O’Riordan, E., and Shishkin, G.I.: Singularly perturbed differential equations with discontinuous source terms. In: Miller, J.J.H., Shishkin, G.I., Vulkov, L. (eds.) Analytical and Numerical Methods for Convection-Dominated and Singularly Perturbed Problems, Nova Science, New York, pp. 23–32 (2000)
7.
Zurück zum Zitat Gracia, J.L., Lisbona, F.J., Riordan, E.O’.: A coupled system of singularly perturbed parabolic reaction -diffusion equations. Adv. Comput. Math. 32, 43–61 (2010) Gracia, J.L., Lisbona, F.J., Riordan, E.O’.: A coupled system of singularly perturbed parabolic reaction -diffusion equations. Adv. Comput. Math. 32, 43–61 (2010)
8.
Zurück zum Zitat Kumar, S., Rao, S.C.S.: A robust domain decomposition algorithm for singularly perturbed semilinear systems. Int. J. Comput. Math. 94, 1108–1122 (2017)CrossRefMATH Kumar, S., Rao, S.C.S.: A robust domain decomposition algorithm for singularly perturbed semilinear systems. Int. J. Comput. Math. 94, 1108–1122 (2017)CrossRefMATH
9.
Zurück zum Zitat Linß, T., Madden, N.: Layer-adapted meshes for a system of coupled singularly perturbed reaction-diffusion problems. IMA J. Numer. Anal. 29, 109–125 (2009)CrossRefMATH Linß, T., Madden, N.: Layer-adapted meshes for a system of coupled singularly perturbed reaction-diffusion problems. IMA J. Numer. Anal. 29, 109–125 (2009)CrossRefMATH
10.
Zurück zum Zitat Natesan, S., Deb, B.S.: A robust computational method for singularly perturbed coupled system of reaction-diffusion boundary-value problems. Appl. Math. Comput. 188(1), 353–364 (2007)MATH Natesan, S., Deb, B.S.: A robust computational method for singularly perturbed coupled system of reaction-diffusion boundary-value problems. Appl. Math. Comput. 188(1), 353–364 (2007)MATH
11.
Zurück zum Zitat Paramasivam, M., Valarmathi, S., Miller, J.J.H.: Second order parameter-uniform convergence for a finite difference method for a singularly perturbed linear reaction-diffusion system. Math. Commun. 15, 587–612 (2010)MATH Paramasivam, M., Valarmathi, S., Miller, J.J.H.: Second order parameter-uniform convergence for a finite difference method for a singularly perturbed linear reaction-diffusion system. Math. Commun. 15, 587–612 (2010)MATH
12.
Zurück zum Zitat Paramasivam, M., Miller, J.J.H., Valarmathi, S.: Parameter-uniform convergence for a finite difference method for a singulalry perturbed linear reaction-diffusion system with discontinuous source terms. Int. J. Numer. Anal. Model. 11, 385–399 (2014)MATH Paramasivam, M., Miller, J.J.H., Valarmathi, S.: Parameter-uniform convergence for a finite difference method for a singulalry perturbed linear reaction-diffusion system with discontinuous source terms. Int. J. Numer. Anal. Model. 11, 385–399 (2014)MATH
13.
Zurück zum Zitat Rajaiah, J., Sigamani, V.: A parameter-uniform essentially first order convergent fitted mesh method for a singularly perturbed Robin problem. IJMTT 59, 8–21 (2018)CrossRef Rajaiah, J., Sigamani, V.: A parameter-uniform essentially first order convergent fitted mesh method for a singularly perturbed Robin problem. IJMTT 59, 8–21 (2018)CrossRef
14.
Zurück zum Zitat Rao, S.C.S., Chawla, S.: Interior layers in coupled system of two singularly perturbed reaction-diffusion equations with discontinuous source term. NAA 2012, LNCS 8236, pp. 445-453 (2013) Rao, S.C.S., Chawla, S.: Interior layers in coupled system of two singularly perturbed reaction-diffusion equations with discontinuous source term. NAA 2012, LNCS 8236, pp. 445-453 (2013)
15.
Zurück zum Zitat Rao, S.C.S., Chawla, S.: Numerical solution for a coupled system of singularly perturbed initial value problems with discontinuous source term. Springer Proceedings in Mathematics and Statistics, vol. 143, pp. 753–764 (2015) Rao, S.C.S., Chawla, S.: Numerical solution for a coupled system of singularly perturbed initial value problems with discontinuous source term. Springer Proceedings in Mathematics and Statistics, vol. 143, pp. 753–764 (2015)
16.
Zurück zum Zitat Rao, S.C.S., Chawla, S.: Second order uniformly convergent numerical method for a coupled system of singularly perturbed reaction-diffusion problems with discontinuous source term LNCSE, vol. 108, pp. 233–244 (2015) Rao, S.C.S., Chawla, S.: Second order uniformly convergent numerical method for a coupled system of singularly perturbed reaction-diffusion problems with discontinuous source term LNCSE, vol. 108, pp. 233–244 (2015)
17.
Zurück zum Zitat Rao, S.C.S., Kumar, M., Singh, J.: A discrete Schwarz waveform relaxation method of higher order for singularly perturbed parabolic reaction–diffusion problems. J. Math. Chem. 58, 574–594 (2020) Rao, S.C.S., Kumar, M., Singh, J.: A discrete Schwarz waveform relaxation method of higher order for singularly perturbed parabolic reaction–diffusion problems. J. Math. Chem. 58, 574–594 (2020)
18.
Zurück zum Zitat Rao, S.C.S., Chaturvedi, A.K.: Analysis of an almost fourth-order parameter-uniformly convergent numerical method for singularly perturbed semilinear reaction-diffusion system with non-smooth source term. Appl. Math. Comput. 421, 126944 (2022)MATH Rao, S.C.S., Chaturvedi, A.K.: Analysis of an almost fourth-order parameter-uniformly convergent numerical method for singularly perturbed semilinear reaction-diffusion system with non-smooth source term. Appl. Math. Comput. 421, 126944 (2022)MATH
19.
Zurück zum Zitat Rao, S.C.S., Chawla, S.: Numerical solution of singularly perturbed linear parabolic system with discontinuous source term. Appl. Numer. Math. 127, 249–265 (2018)CrossRefMATH Rao, S.C.S., Chawla, S.: Numerical solution of singularly perturbed linear parabolic system with discontinuous source term. Appl. Numer. Math. 127, 249–265 (2018)CrossRefMATH
20.
Zurück zum Zitat Rao, S.C.S., Chawla, S.: Parameter-uniform convergence of a numerical method for a coupled system of singularly perturbed semilinear reaction-diffusion equations with boundary and interior layers. J. Comput. Appl. Math. 352, 223–239 (2019)CrossRefMATH Rao, S.C.S., Chawla, S.: Parameter-uniform convergence of a numerical method for a coupled system of singularly perturbed semilinear reaction-diffusion equations with boundary and interior layers. J. Comput. Appl. Math. 352, 223–239 (2019)CrossRefMATH
21.
Zurück zum Zitat Rao, S.C.S., Kumar, M.: Optimal B-spline collocation method for self-adjoint singularly perturbed boundary value problems. Appl. Math. Comput. 188, 749–761 (2007)MATH Rao, S.C.S., Kumar, M.: Optimal B-spline collocation method for self-adjoint singularly perturbed boundary value problems. Appl. Math. Comput. 188, 749–761 (2007)MATH
22.
Zurück zum Zitat Rao, S.C.S., Kumar, S.: An almost fourth order parameter-uniformlty convergent domain decomposition method for a coupled system of singularly perturbed reaction-diffusion problems. J. Comput. Appl. Math. 235, 3342–3354 (2011)CrossRefMATH Rao, S.C.S., Kumar, S.: An almost fourth order parameter-uniformlty convergent domain decomposition method for a coupled system of singularly perturbed reaction-diffusion problems. J. Comput. Appl. Math. 235, 3342–3354 (2011)CrossRefMATH
23.
Zurück zum Zitat Rao, S.C.S., Kumar, S.: Second order global uniformly convergent numerical method for a coupled system of singularly perturbed initial value problems. Appl. Math. Comput. 219, 3740–3753 (2012)MATH Rao, S.C.S., Kumar, S.: Second order global uniformly convergent numerical method for a coupled system of singularly perturbed initial value problems. Appl. Math. Comput. 219, 3740–3753 (2012)MATH
24.
Zurück zum Zitat Rao, S.C.S., Kumar, M.: An almost fourth order parameter-robust numerical method for a linear system of \((M\ge 2)\) coupled singularly perturbed reaction-diffusion problems. Int. J. Numer. Anal. Model. 10, 603–621 (2013)MATH Rao, S.C.S., Kumar, M.: An almost fourth order parameter-robust numerical method for a linear system of \((M\ge 2)\) coupled singularly perturbed reaction-diffusion problems. Int. J. Numer. Anal. Model. 10, 603–621 (2013)MATH
25.
Zurück zum Zitat Rao, S.C.S., Kumar, S., Kumar, M.: Uniform global convergence of a hybrid scheme for singularly perturbed reaction-diffusion systems. J. Optim. Theory Appl. 151, 338–352 (2011)CrossRefMATH Rao, S.C.S., Kumar, S., Kumar, M.: Uniform global convergence of a hybrid scheme for singularly perturbed reaction-diffusion systems. J. Optim. Theory Appl. 151, 338–352 (2011)CrossRefMATH
26.
Zurück zum Zitat Shishkin, G.I.: Mesh approximation of singularly perturbed boundary-value problems for systems of elliptic and parabolic equations. Comput. Math. Math. Phys. 35(4), 429–446 (1995)MATH Shishkin, G.I.: Mesh approximation of singularly perturbed boundary-value problems for systems of elliptic and parabolic equations. Comput. Math. Math. Phys. 35(4), 429–446 (1995)MATH
Metadaten
Titel
Numerical Treatment for a Coupled System of Singularly Perturbed Reaction–Diffusion Equations with Robin Boundary Conditions and Having Boundary and Interior Layers
verfasst von
Sheetal Chawla
S. Chandra Sekhara Rao
Copyright-Jahr
2023
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-19-7272-0_44

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.