Skip to main content

2025 | OriginalPaper | Buchkapitel

Object Counting from Images Using Deep Learning Technique

verfasst von : Arishpreet Kour Bali, Amit Kumar

Erschienen in: Innovative Computing and Communications

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This article gives an overview of object counting problem and its usage. It also describes various ways of counting objects from still images and video streams. Object counting is an important task in machine learning. It helps to identify objects in an image, so that the number of objects can be determined. However, there are many challenges when it comes to object counting using deep learning techniques such as illumination, variation, occlusion, and real-time counting. We have also reviewed some of the recent papers to get an idea of current technology. At last through one example, we have discussed how object counting can be happened through deep learning techniques.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Baldominos, A., Saez, Y., & Isasi, P. (2019). A survey of hand written character recognition with MNIST and EMNIST. Applied Sciences, 9(15), 3169. Baldominos, A., Saez, Y., & Isasi, P. (2019). A survey of hand written character recognition with MNIST and EMNIST. Applied Sciences, 9(15), 3169.
2.
Zurück zum Zitat Geron, A. (2022). Hands-on machine learning with Scikit-learn, Keras, and TensorFlow. O’Reilly Media, Inc. Geron, A. (2022). Hands-on machine learning with Scikit-learn, Keras, and TensorFlow. O’Reilly Media, Inc.
3.
Zurück zum Zitat Robertson, J. G. (1986). Optical extraction of single-object spectra from observations with two-dimensional detectors. Publications of the Astronomical Society of the Pacific, 98(609), 1220. Robertson, J. G. (1986). Optical extraction of single-object spectra from observations with two-dimensional detectors. Publications of the Astronomical Society of the Pacific, 98(609), 1220.
4.
Zurück zum Zitat Dirir, A. (2021). An advanced deep learning approach for multi-object counting in urban vehicular environments. Future Internet, 13(12), 306. Dirir, A. (2021). An advanced deep learning approach for multi-object counting in urban vehicular environments. Future Internet, 13(12), 306.
6.
Zurück zum Zitat Bezdek, J. C., Ehrlich, R., Full, W. (1984). FCM: The fuzzy c-means clustering algorithm. Computers Geosciences, 10(2–3), 191–203. Bezdek, J. C., Ehrlich, R., Full, W. (1984). FCM: The fuzzy c-means clustering algorithm. Computers Geosciences, 10(2–3), 191–203.
7.
Zurück zum Zitat Hartigan, J. A., & Wong, M. A. (1979). Algorithm AS136: AK-means clustering algorithm. Journal of the Royal Statistical Society Series C (Applied Statistics), 28(1), 100–108; Spampinato, D., Chen-Burger, Y.-H., Nadarajan, G., & Fisher, R. B. (2008). Detecting, tracking and counting fish in low quality unconstrained underwater videos. VISAPP, 1(2), 514–519. Hartigan, J. A., & Wong, M. A. (1979). Algorithm AS136: AK-means clustering algorithm. Journal of the Royal Statistical Society Series C (Applied Statistics), 28(1), 100–108; Spampinato, D., Chen-Burger, Y.-H., Nadarajan, G., & Fisher, R. B. (2008). Detecting, tracking and counting fish in low quality unconstrained underwater videos. VISAPP, 1(2), 514–519.
8.
Zurück zum Zitat Tian, C., Fei, L., Zheng, W., Xu, Y., Zuo, W., & Lin, C.-W. (2020). Deep learning on image denoising: An overview. Neural Networks, 131, 251–275. Tian, C., Fei, L., Zheng, W., Xu, Y., Zuo, W., & Lin, C.-W. (2020). Deep learning on image denoising: An overview. Neural Networks, 131, 251–275.
9.
Zurück zum Zitat Hung, C.-Y., Chen, W.-C., Lai, P.-T., Lin, C.-H., & Lee, C.-C. (2017). Comparing deep neural network and other machine learning algorithms for stroke prediction in a large—Scale population-based electronic medical claims database. In 2017 39th annual international conference of the IEEE engineering in medicine and biology society (EMBC), 3110–3113. Hung, C.-Y., Chen, W.-C., Lai, P.-T., Lin, C.-H., & Lee, C.-C. (2017). Comparing deep neural network and other machine learning algorithms for stroke prediction in a large—Scale population-based electronic medical claims database. In 2017 39th annual international conference of the IEEE engineering in medicine and biology society (EMBC), 3110–3113.
10.
Zurück zum Zitat Guo, Z., & Hall, R. W. (1989). Parallel thinning with two-subiteration algorithms. Communications of the ACM, 32(3), 359–373. Guo, Z., & Hall, R. W. (1989). Parallel thinning with two-subiteration algorithms. Communications of the ACM, 32(3), 359–373.
11.
Zurück zum Zitat Maron, O., & Lozano-Perez, T. (1997). A framework for multiple-instance learning. Advances in Neural Information Processing Systems, 10. Maron, O., & Lozano-Perez, T. (1997). A framework for multiple-instance learning. Advances in Neural Information Processing Systems, 10.
12.
Zurück zum Zitat Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255–260. Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255–260.
13.
Zurück zum Zitat Madec, S. (2019). Ear density estimation from high resolution RGB imagery using deep learning technique. Agricultural and Forest Meteorology, 264, 225–234. Madec, S. (2019). Ear density estimation from high resolution RGB imagery using deep learning technique. Agricultural and Forest Meteorology, 264, 225–234.
14.
Zurück zum Zitat Nguyen, J. Y., & Clune, J. (2015). Deep neural networks are easily fooled: High confidence predictions for unrecognizable images. In Proceedings of the IEEE conference on computer vision and pattern recognition, 427–436. Nguyen, J. Y., & Clune, J. (2015). Deep neural networks are easily fooled: High confidence predictions for unrecognizable images. In Proceedings of the IEEE conference on computer vision and pattern recognition, 427–436.
15.
Zurück zum Zitat Onoro-Rubio, D., & Lopez-Sastre, R. J. (2016). Towards perspective-free object counting with deep learning. In European conference on computer vision, 615–629. Onoro-Rubio, D., & Lopez-Sastre, R. J. (2016). Towards perspective-free object counting with deep learning. In European conference on computer vision, 615–629.
16.
Zurück zum Zitat Chauhan, R., Ghanshala, K. K., & Joshi, R. C. (2018). Convolutional neural network (CNN) for image detection and recognition. In 2018 first international conference on secure cyber computing and communication (ICSCCC), 278–282. Chauhan, R., Ghanshala, K. K., & Joshi, R. C. (2018). Convolutional neural network (CNN) for image detection and recognition. In 2018 first international conference on secure cyber computing and communication (ICSCCC), 278–282.
17.
Zurück zum Zitat Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., & Monfardini, G. (2008). The graph neural network model. IEEE Transactions on Neural Networks, 20(1), 61–80. Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., & Monfardini, G. (2008). The graph neural network model. IEEE Transactions on Neural Networks, 20(1), 61–80.
18.
Zurück zum Zitat Chen, W., Luo, J., & Parker, K. J. (1998). Image segmentation via adaptive K-mean clustering and knowledge-based morphological operations with biomedical applications. IEEE Transactions on Image Processing, 7(12), 1673–1683. Chen, W., Luo, J., & Parker, K. J. (1998). Image segmentation via adaptive K-mean clustering and knowledge-based morphological operations with biomedical applications. IEEE Transactions on Image Processing, 7(12), 1673–1683.
19.
Zurück zum Zitat Berg, S. (2019). Ilastik: Interactive machine learning for (bio) image analysis. Nature Methods, 16(12), 1226–1232. Berg, S. (2019). Ilastik: Interactive machine learning for (bio) image analysis. Nature Methods, 16(12), 1226–1232.
20.
Zurück zum Zitat Kuznetsova, A. (2020). The open images dataset v4. International Journal of Computer Vision, 128(7), 1956–1981. Kuznetsova, A. (2020). The open images dataset v4. International Journal of Computer Vision, 128(7), 1956–1981.
Metadaten
Titel
Object Counting from Images Using Deep Learning Technique
verfasst von
Arishpreet Kour Bali
Amit Kumar
Copyright-Jahr
2025
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-4152-6_17