Skip to main content
Erschienen in: Optical Memory and Neural Networks 4/2019

01.10.2019

Object Detection with Deep Neural Networks for Reinforcement Learning in the Task of Autonomous Vehicles Path Planning at the Intersection

verfasst von: D. A. Yudin, A. Skrynnik, A. Krishtopik, I. Belkin, A. I. Panov

Erschienen in: Optical Memory and Neural Networks | Ausgabe 4/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Among a number of problems in the behavior planning of an unmanned vehicle the central one is movement in difficult areas. In particular, such areas are intersections at which direct interaction with other road agents takes place. In our work, we offer a new approach to train of the intelligent agent that simulates the behavior of an unmanned vehicle, based on the integration of reinforcement learning and computer vision. Using full visual information about the road intersection obtained from aerial photographs, it is studied automatic detection the relative positions of all road agents with various architectures of deep neural networks (YOLOv3, Faster R-CNN, RetinaNet, Cascade R-CNN, Mask R-CNN, Cascade Mask R-CNN). The possibilities of estimation of the vehicle orientation angle based on a convolutional neural network are also investigated. Obtained additional features are used in the modern effective reinforcement learning methods of Soft Actor Critic and Rainbow, which allows to accelerate the convergence of its learning process. To demonstrate the operation of the developed system, an intersection simulator was developed, at which a number of model experiments were carried out.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Sakib, N., Yao, H., and Zhang, H., Reinforcing classical planning for adversary driving scenarios, arXiv: 1903.08606v1, 2019. Sakib, N., Yao, H., and Zhang, H., Reinforcing classical planning for adversary driving scenarios, arXiv: 1903.08606v1, 2019.
3.
Zurück zum Zitat Kim, M., Path planning and following for autonomous vehicles and its application to intersection with moving obstacles, MSc Thesis, University of Florida, 2017. https://ufdc.ufl.edu/UFE0051086/00001. Kim, M., Path planning and following for autonomous vehicles and its application to intersection with moving obstacles, MSc Thesis, University of Florida, 2017. https://​ufdc.​ufl.​edu/​UFE0051086/​00001.​
4.
Zurück zum Zitat Paxton, C., Raman, V., Hager, G.D., and Kobilarov, M., Combining neural networks and tree search for task and motion planning in challenging environments, arXiv:1703.07887v1, 2017. Paxton, C., Raman, V., Hager, G.D., and Kobilarov, M., Combining neural networks and tree search for task and motion planning in challenging environments, arXiv:1703.07887v1, 2017.
5.
Zurück zum Zitat Tram, T., Jansson, A., Gronberg, R., Sjoberg, J., and Ali, M., Learning negotiating behavior between cars in intersections using deep Q-learning, arXiv:1810.10469v1, 2018. Tram, T., Jansson, A., Gronberg, R., Sjoberg, J., and Ali, M., Learning negotiating behavior between cars in intersections using deep Q-learning, arXiv:1810.10469v1, 2018.
6.
Zurück zum Zitat Jaeyoung, L., Balakrishnan, A., Gaurav, A., Czarnecki, K., and Sedwards, S., WiseMove: A framework for safe deep reinforcement learning for autonomous driving, arXiv:1902.04118, 2019. Jaeyoung, L., Balakrishnan, A., Gaurav, A., Czarnecki, K., and Sedwards, S., WiseMove: A framework for safe deep reinforcement learning for autonomous driving, arXiv:1902.04118, 2019.
8.
Zurück zum Zitat Chaplot, D.S., Gupta, S., Gupta, A., and Salakhutdinov, R., Modular visual navigation using active neural mapping, 2019. http://www.cs.cmu.edu/~dchaplot/papers/active_neural_mapping.pdf. Chaplot, D.S., Gupta, S., Gupta, A., and Salakhutdinov, R., Modular visual navigation using active neural mapping, 2019. http://​www.​cs.​cmu.​edu/​~dchaplot/​papers/​active_​neural_​mapping.​pdf.​
9.
Zurück zum Zitat Bacchiani, G., Molinari, D., and Patander M., Microscopic traffic simulation by cooperative multi-agent deep reinforcement learning, arXiv:1903.01365v1, 2019. Bacchiani, G., Molinari, D., and Patander M., Microscopic traffic simulation by cooperative multi-agent deep reinforcement learning, arXiv:1903.01365v1, 2019.
10.
Zurück zum Zitat Computer Vision Annotation Tool (CVAT). https://github.com/opencv/cvat. Computer Vision Annotation Tool (CVAT). https://​github.​com/​opencv/​cvat.​
11.
Zurück zum Zitat Structural Analysis and Shape Descriptors. MinAreaRect. https://docs.opencv.org/3.1.0/d3/dc0/group__imgproc__shape.html. Structural Analysis and Shape Descriptors. MinAreaRect. https://​docs.​opencv.​org/​3.​1.​0/​d3/​dc0/​group_​_​imgproc_​_​shape.​html.​
12.
Zurück zum Zitat Fitzgibbon, A.W. and Fisher, R.B., A buyer’s guide to conic fitting, Proc. 5th British Machine Vision Conference, Birmingham, 1995, pp. 513–522. Fitzgibbon, A.W. and Fisher, R.B., A buyer’s guide to conic fitting, Proc. 5th British Machine Vision Conference, Birmingham, 1995, pp. 513–522.
13.
Zurück zum Zitat Shetty, R., Fritz, M., and Schiele, B., Adversarial scene editing: Automatic object removal from weak supervision, arXiv:1806.01911, 2018. Shetty, R., Fritz, M., and Schiele, B., Adversarial scene editing: Automatic object removal from weak supervision, arXiv:1806.01911, 2018.
14.
Zurück zum Zitat Liu, G., Reda, F. A., Shih, K. J., Wang, T.-C., Tao, A., and Catanzaro, B., Image inpainting for irregular holes using partial convolutions, arXiv:1804.07723, 2018. Liu, G., Reda, F. A., Shih, K. J., Wang, T.-C., Tao, A., and Catanzaro, B., Image inpainting for irregular holes using partial convolutions, arXiv:1804.07723, 2018.
15.
Zurück zum Zitat Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., and Zaremba, W., OpenAI Gym, arXiv:1606.01540, 2016. Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., and Zaremba, W., OpenAI Gym, arXiv:1606.01540, 2016.
16.
Zurück zum Zitat Intersection simulator, MIPT, 2019. https://github.com/cds-mipt/raai-summer-school-2019. Intersection simulator, MIPT, 2019. https://​github.​com/​cds-mipt/​raai-summer-school-2019.​
17.
Zurück zum Zitat Yudin, D. and Slavioglo, D., Usage of fully convolutional network with clustering for traffic light detection, 7th Mediterranean Conference on Embedded Computing, MECO’2018, 2018, pp. 242–247. Yudin, D. and Slavioglo, D., Usage of fully convolutional network with clustering for traffic light detection, 7th Mediterranean Conference on Embedded Computing, MECO’2018, 2018, pp. 242–247.
18.
Zurück zum Zitat Ester, M., Kriegel, H.P., Sander, J., and Xu, X., A density-based algorithm for discovering clusters in large spatial databases with noise, Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, Portland, OR, 1996, pp. 226–231. Ester, M., Kriegel, H.P., Sander, J., and Xu, X., A density-based algorithm for discovering clusters in large spatial databases with noise, Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, Portland, OR, 1996, pp. 226–231.
19.
Zurück zum Zitat Redmon, J. and Farhadi, A., YOLOv3: An incremental improvement, arXiv:1804.027672018, 2018. Redmon, J. and Farhadi, A., YOLOv3: An incremental improvement, arXiv:1804.027672018, 2018.
20.
Zurück zum Zitat Ren, S., He, K., Girshick, R., and Sun, J., Faster R-CNN: Towards real-time object detection with region proposal networks, NIPS, 2015. Ren, S., He, K., Girshick, R., and Sun, J., Faster R-CNN: Towards real-time object detection with region proposal networks, NIPS, 2015.
21.
Zurück zum Zitat Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Dollár, P., Focal loss for dense object detection, arXiv:1 708.02002v2, 2017. Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Dollár, P., Focal loss for dense object detection, arXiv:1 708.02002v2, 2017.
22.
Zurück zum Zitat Cai, Z. and Vasconcelos, N., Cascade R-CNN: Delving into high quality object detection, CVPR, 2018. Cai, Z. and Vasconcelos, N., Cascade R-CNN: Delving into high quality object detection, CVPR, 2018.
23.
Zurück zum Zitat He, K., Gkioxari, G., Dollár, P., and Girshick, R., Mask R-CNN, arXiv:1703.06870, 2017. He, K., Gkioxari, G., Dollár, P., and Girshick, R., Mask R-CNN, arXiv:1703.06870, 2017.
24.
Zurück zum Zitat Cai, Z., and Vasconcelos, N., Cascade R-CNN: High quality object detection and instance segmentation, arXiv: 1906.09756, 2019. Cai, Z., and Vasconcelos, N., Cascade R-CNN: High quality object detection and instance segmentation, arXiv: 1906.09756, 2019.
25.
Zurück zum Zitat Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., and Xiao, B., Deep high-resolution representation learning for visual recognition, arXiv:1908.07919v1, 2019. Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., and Xiao, B., Deep high-resolution representation learning for visual recognition, arXiv:1908.07919v1, 2019.
26.
Zurück zum Zitat Shikunov, M., and Panov, A.I., Hierarchical reinforcement learning approach for the road intersection task, Biologically Inspired Cognitive Architectures 2019, BICA 2019,Advances in Intelligent Systems and Computing, 2020, pp. 495–506. Shikunov, M., and Panov, A.I., Hierarchical reinforcement learning approach for the road intersection task, Biologically Inspired Cognitive Architectures 2019, BICA 2019,Advances in Intelligent Systems and Computing, 2020, pp. 495–506.
27.
Zurück zum Zitat Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S., Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor, 2018. Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S., Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor, 2018.
28.
Zurück zum Zitat Hessel, M., Modayil, J., van Hasselt, H., Schaul, T., Ostrovski, G., Dabney, W., Horgan, D., Piot, B., Azar, M., and Silver, D., Rainbow: Combining improvements in deep reinforcement learning, arXiv:1710.02298, 2017. Hessel, M., Modayil, J., van Hasselt, H., Schaul, T., Ostrovski, G., Dabney, W., Horgan, D., Piot, B., Azar, M., and Silver, D., Rainbow: Combining improvements in deep reinforcement learning, arXiv:1710.02298, 2017.
29.
Zurück zum Zitat Ziebart, B.D., Modeling Purposeful Adaptive Behavior with the Principle of Maximum Causal Entropy, Carnegie Mellon University, 2010. Ziebart, B.D., Modeling Purposeful Adaptive Behavior with the Principle of Maximum Causal Entropy, Carnegie Mellon University, 2010.
Metadaten
Titel
Object Detection with Deep Neural Networks for Reinforcement Learning in the Task of Autonomous Vehicles Path Planning at the Intersection
verfasst von
D. A. Yudin
A. Skrynnik
A. Krishtopik
I. Belkin
A. I. Panov
Publikationsdatum
01.10.2019
Verlag
Pleiades Publishing
Erschienen in
Optical Memory and Neural Networks / Ausgabe 4/2019
Print ISSN: 1060-992X
Elektronische ISSN: 1934-7898
DOI
https://doi.org/10.3103/S1060992X19040118

Weitere Artikel der Ausgabe 4/2019

Optical Memory and Neural Networks 4/2019 Zur Ausgabe