Skip to main content

2022 | OriginalPaper | Buchkapitel

6. Object Recognition Methods in a Built Environment

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Recognition of an object from a point cloud, image or video is an important task in computer vision which plays a crucial role in many real-world applications. The challenges involved in object recognition, aiming at locating object instances from a large number of predefined categories in collections (images, video or, model library), are multi-model, multi-pose, complicated background, occlusion, and depth variations. In the past few years numerous methods were developed to tackle these challenges and have reported remarkable progress for 3D objects. However, suitable methods of object recognition are needed to achieve added value in built environment. Suitable acquisition methods are also necessary to compensate the impact of darkness, dirt, and occlusion. This chapter provides a comprehensive overview of the recent advances in 3D object recognition of indoor objects using Convolutional Neural Networks (CNN). Methodology for object recognition, approaches for point cloud generation, and test bases are presented. The comparison of main recognition methods based on methods of geometric shape descriptor and supervised learning and their strengths and weakness are also included. The focus lies on the specific requirements and constrains in an industrial environment like tight assembly, light, dirt, occlusion, or incomplete data sets. Finally, a recommendation for use of existing CNN framework for implementation of an automatic object recognition procedure is given.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
23.
Zurück zum Zitat Kamble K, Kulkarni H, Patil J, Sukhatankar S (2018) Object recognition through smartphone using deep learning techniques. In: 2nd international conference on soft computing systems, ICSCS 2018, vol 837. Communications in Computer and Information Science, pp 242–249. https://doi.org/10.1007/978-981-13-1936-5_27 Kamble K, Kulkarni H, Patil J, Sukhatankar S (2018) Object recognition through smartphone using deep learning techniques. In: 2nd international conference on soft computing systems, ICSCS 2018, vol 837. Communications in Computer and Information Science, pp 242–249. https://​doi.​org/​10.​1007/​978-981-13-1936-5_​27
29.
Zurück zum Zitat Chang AX, Funkhouser T, Guibas L, Hanrahan P, Huang Q, Li Z, Savarese S, Savva M, Song S, Su H, Xiao J, Yi L, Yu F (2020) ShapeNet: an information-rich 3D model repository. https://arxiv.org/abs/1512.03012. Accessed 30 Sep 2020 Chang AX, Funkhouser T, Guibas L, Hanrahan P, Huang Q, Li Z, Savarese S, Savva M, Song S, Su H, Xiao J, Yi L, Yu F (2020) ShapeNet: an information-rich 3D model repository. https://​arxiv.​org/​abs/​1512.​03012. Accessed 30 Sep 2020
30.
Zurück zum Zitat Quadros A (2013) Representing 3D shape in sparse range images for urban object classification. Ph.D. thesis, The University of Sydney Quadros A (2013) Representing 3D shape in sparse range images for urban object classification. Ph.D. thesis, The University of Sydney
31.
Zurück zum Zitat Lehtola VV, Kaartinen H, Nüchter A, Kaijaluoto R, Kukko A, Litkey P, Honkavaara E, Rosnell T, Vaaja MT, Virtanen J-P, Kurkela M, El Issaoui A, Zhu L, Jaakkola A, Hyyppä J (2017) Comparison of the selected state-of-the-art 3D indoor scanning and point cloud generation methods. Remote Sensing 9:796. https://doi.org/10.3390/rs9080796CrossRef Lehtola VV, Kaartinen H, Nüchter A, Kaijaluoto R, Kukko A, Litkey P, Honkavaara E, Rosnell T, Vaaja MT, Virtanen J-P, Kurkela M, El Issaoui A, Zhu L, Jaakkola A, Hyyppä J (2017) Comparison of the selected state-of-the-art 3D indoor scanning and point cloud generation methods. Remote Sensing 9:796. https://​doi.​org/​10.​3390/​rs9080796CrossRef
39.
Zurück zum Zitat Sommer M, Stjepandić J, Stobrawa S, von Soden M (2021) Automated generation of a digital twin in manufacturing for a built environment using scan and object detection. J Indus Inform Integr XX (in press) Sommer M, Stjepandić J, Stobrawa S, von Soden M (2021) Automated generation of a digital twin in manufacturing for a built environment using scan and object detection. J Indus Inform Integr XX (in press)
43.
Zurück zum Zitat Qi CR, Su H, Mo K, Guibas LJ (2017) PointNet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, Honolulu, HI, USA, 21–26 July 2017 Qi CR, Su H, Mo K, Guibas LJ (2017) PointNet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, Honolulu, HI, USA, 21–26 July 2017
50.
Zurück zum Zitat Garcia-Garcia A, Garcia-Rodriguez J, Orts-Escolano S, Oprea S, Gomez-Donoso F, Cazorla M (2017) A study of the effect of noise and occlusion on the accuracy of convolutional neural networks applied to 3D object recognition. Comput Vision Image Understand 164:124–134. https://doi.org/10.1016/j.cviu.2017.06.006 Garcia-Garcia A, Garcia-Rodriguez J, Orts-Escolano S, Oprea S, Gomez-Donoso F, Cazorla M (2017) A study of the effect of noise and occlusion on the accuracy of convolutional neural networks applied to 3D object recognition. Comput Vision Image Understand 164:124–134. https://​doi.​org/​10.​1016/​j.​cviu.​2017.​06.​006
53.
Zurück zum Zitat Kuhn O, Liese H, Stjepandić J (2011) Methodology for knowledge-based engineering template update. In: Cavallucci D, Guio R, Cascini G (eds) Building innovation pipelines through computer-aided innovation. Springer-Verlag, Berlin Heidelberg, pp 178–191. https://doi.org/10.1007/978-3-642-22182-8_14 Kuhn O, Liese H, Stjepandić J (2011) Methodology for knowledge-based engineering template update. In: Cavallucci D, Guio R, Cascini G (eds) Building innovation pipelines through computer-aided innovation. Springer-Verlag, Berlin Heidelberg, pp 178–191. https://​doi.​org/​10.​1007/​978-3-642-22182-8_​14
Metadaten
Titel
Object Recognition Methods in a Built Environment
verfasst von
Josip Stjepandić
Markus Sommer
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-030-77539-1_6

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.