Skip to main content
Erschienen in:

23.11.2024 | Connected Automated Vehicles and ITS, Vehicle Dynamics and Control

OBSTACLE AVOIDANCE PATH PLANNING FOR INTELLIGENT VEHICLES BASED ON SPARROW POTENTIAL FIELD IN MULTI-TYPE SCENARIOS

verfasst von: Qiping Chen, Siyuan Pi, Zhiqiang Jiang, Dequan Zeng, Yingqiang Zhong

Erschienen in: International Journal of Automotive Technology | Ausgabe 1/2025

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To overcome the issue of unreachable targets and local optima in traditional artificial potential fields in multi-type scenarios, this paper introduces a method for obstacle avoidance path planning for intelligent vehicles based on the sparrow potential field (SPF). First, by integrating gravity and repulsion adjustment factors into the traditional artificial potential field, we propose a new intermediate potential field and target repulsive potential field. The resulting potential field is then optimized through the vehicle’s heading angle to resolve issues present in structured scenes. Second, we propose an adaptive velocity function and consider dynamic constraints in path planning. Next, we combine the improved artificial potential field with the sparrow search algorithm to resolve local path optimization problems in unstructured scenarios. Finally, simulation experiments are conducted using Simulink and Carsim co-simulation platform. The results show that in the unstructured scenario, the evaluation function score of SPF algorithm is the best, and the number of algorithm iterations is reduced by about half on average. In a structured scenario, the maximum lateral acceleration of the path planned by the SPF algorithm is generally reduced by about 0.1 g, and the average front wheel angle is reduced by about 2.3%.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Weitere Produktempfehlungen anzeigen
Literatur
Zurück zum Zitat Abed, M. S., Lutfy, O. F., & Al-Doori, Q. F. (2022). Online path planning of mobile robots based on African vultures optimization algorithm in unknown environments. Journal Européen Des Systèmes Automatisés, 55(3), 405–412.CrossRef Abed, M. S., Lutfy, O. F., & Al-Doori, Q. F. (2022). Online path planning of mobile robots based on African vultures optimization algorithm in unknown environments. Journal Européen Des Systèmes Automatisés, 55(3), 405–412.CrossRef
Zurück zum Zitat Alinezhad, A., Khalili, J., & Alinezhad, A. (2019). CRITIC method. New Methods and Applications in Multiple Attribute Decision Making (MADM), 2019, 199–203.CrossRefMATH Alinezhad, A., Khalili, J., & Alinezhad, A. (2019). CRITIC method. New Methods and Applications in Multiple Attribute Decision Making (MADM), 2019, 199–203.CrossRefMATH
Zurück zum Zitat Chen, Y., Bai, G., & Zhan, Y. (2021). Path planning and obstacle avoiding of the USV based on improved ACO-APF hybrid algorithm with adaptive early-warning. IEEE Access, 9, 40728–40742.CrossRef Chen, Y., Bai, G., & Zhan, Y. (2021). Path planning and obstacle avoiding of the USV based on improved ACO-APF hybrid algorithm with adaptive early-warning. IEEE Access, 9, 40728–40742.CrossRef
Zurück zum Zitat Erke, S., Bin, D., & Yiming, N. (2020). An improved A-Star based path planning algorithm for autonomous land vehicles. International Journal of Advanced Robotic Systems, 17(5), 1729881420962263.CrossRef Erke, S., Bin, D., & Yiming, N. (2020). An improved A-Star based path planning algorithm for autonomous land vehicles. International Journal of Advanced Robotic Systems, 17(5), 1729881420962263.CrossRef
Zurück zum Zitat Jayaweera, H. M., & Hanoun, S. (2020). A dynamic artificial potential field (D-APF) UAV path planning technique for following ground moving targets. IEEE Access, 8, 192760–192776.CrossRef Jayaweera, H. M., & Hanoun, S. (2020). A dynamic artificial potential field (D-APF) UAV path planning technique for following ground moving targets. IEEE Access, 8, 192760–192776.CrossRef
Zurück zum Zitat Khedr, A. M., Aghbari, Z. A., & Raj, P. P. V. (2023). MSSPP: modified sparrow search algorithm based mobile sink path planning for WSNs. Neural Computing and Applications, 35(2), 1363–1378.CrossRefMATH Khedr, A. M., Aghbari, Z. A., & Raj, P. P. V. (2023). MSSPP: modified sparrow search algorithm based mobile sink path planning for WSNs. Neural Computing and Applications, 35(2), 1363–1378.CrossRefMATH
Zurück zum Zitat Li, B., Zhang, Y., & Shao, Z. (2017). Simultaneous versus joint computing: A case study of multi-vehicle parking motion planning. Journal of Computer Science, 20(1), 30–40.CrossRefMATH Li, B., Zhang, Y., & Shao, Z. (2017). Simultaneous versus joint computing: A case study of multi-vehicle parking motion planning. Journal of Computer Science, 20(1), 30–40.CrossRefMATH
Zurück zum Zitat Lin, Z., Yue, M., & Chen, G. (2022). Path planning of mobile robot with PSO-based APF and fuzzy-based DWA subject to moving obstacles. Transactions of the Institute of Measurement and Control, 44(1), 121–132.CrossRefMATH Lin, Z., Yue, M., & Chen, G. (2022). Path planning of mobile robot with PSO-based APF and fuzzy-based DWA subject to moving obstacles. Transactions of the Institute of Measurement and Control, 44(1), 121–132.CrossRefMATH
Zurück zum Zitat Liu, J., Wei, X., & Huang, H. (2021a). An improved grey wolf optimization algorithm and its application in path planning. IEEE Access, 9, 121944–121956.CrossRefMATH Liu, J., Wei, X., & Huang, H. (2021a). An improved grey wolf optimization algorithm and its application in path planning. IEEE Access, 9, 121944–121956.CrossRefMATH
Zurück zum Zitat Liu, Q., Zhang, Y., & Li, M. (2021b). Multi-UAV path planning based on fusion of sparrow search algorithm and improved bioinspired neural network. IEEE Access, 9, 124670–124681.CrossRefMATH Liu, Q., Zhang, Y., & Li, M. (2021b). Multi-UAV path planning based on fusion of sparrow search algorithm and improved bioinspired neural network. IEEE Access, 9, 124670–124681.CrossRefMATH
Zurück zum Zitat Luo, J., Wang, Z. X., & Pan, K. L. (2022). Reliable path planning algorithm based on improved artificial potential field method. IEEE Access, 10, 108276–108284.CrossRefMATH Luo, J., Wang, Z. X., & Pan, K. L. (2022). Reliable path planning algorithm based on improved artificial potential field method. IEEE Access, 10, 108276–108284.CrossRefMATH
Zurück zum Zitat Maw, A. A., Tyan, M., & Lee, J. W. (2020). IADA*: Improved anytime path planning and replanning algorithm for autonomous vehicle. Journal of Intelligent and Robotic Systems, 100(3–4), 1005–1013.CrossRefMATH Maw, A. A., Tyan, M., & Lee, J. W. (2020). IADA*: Improved anytime path planning and replanning algorithm for autonomous vehicle. Journal of Intelligent and Robotic Systems, 100(3–4), 1005–1013.CrossRefMATH
Zurück zum Zitat Natarajan, N., Vasudevan, M., & Dineshkumar, S. K. (2022). Comparison of analytic hierarchy process (AHP) and fuzzy analytic hierarchy process (f-AHP) for the sustainability assessment of a water supply project. Journal of the Institution of Engineers (India): Series A, 103(4), 1029–1039.MATH Natarajan, N., Vasudevan, M., & Dineshkumar, S. K. (2022). Comparison of analytic hierarchy process (AHP) and fuzzy analytic hierarchy process (f-AHP) for the sustainability assessment of a water supply project. Journal of the Institution of Engineers (India): Series A, 103(4), 1029–1039.MATH
Zurück zum Zitat Oussama Khatib. (1986). Real-time obstacle avoidance for manipulators and mobile robots. The International Journal of Robotics Research, 5(1), 90–98.CrossRefMATH Oussama Khatib. (1986). Real-time obstacle avoidance for manipulators and mobile robots. The International Journal of Robotics Research, 5(1), 90–98.CrossRefMATH
Zurück zum Zitat Ouyang, C., Qiu, Y., & Zhu, D. (2021b). Adaptive spiral flying sparrow search algorithm. Scientific Programming, 2021, 1–16.MATH Ouyang, C., Qiu, Y., & Zhu, D. (2021b). Adaptive spiral flying sparrow search algorithm. Scientific Programming, 2021, 1–16.MATH
Zurück zum Zitat Ouyang, C., Zhu, D., & Qiu, Y. (2021a). Lens learning sparrow search algorithm. Mathematical Problems in Engineering, 2021, 1–17.CrossRefMATH Ouyang, C., Zhu, D., & Qiu, Y. (2021a). Lens learning sparrow search algorithm. Mathematical Problems in Engineering, 2021, 1–17.CrossRefMATH
Zurück zum Zitat Pan, Z., Zhang, C., & Xia, Y. (2021). An improved artificial potential field method for path planning and formation control of the multi-UAV systems. IEEE Transactions on Circuits and Systems II: Express Briefs, 69(3), 1129–1133.MATH Pan, Z., Zhang, C., & Xia, Y. (2021). An improved artificial potential field method for path planning and formation control of the multi-UAV systems. IEEE Transactions on Circuits and Systems II: Express Briefs, 69(3), 1129–1133.MATH
Zurück zum Zitat Petres, C., Pailhas, Y., & Patron, P. (2007). Path planning for autonomous underwater vehicles. IEEE Transactions on Robotics, 23, 331–341.CrossRef Petres, C., Pailhas, Y., & Patron, P. (2007). Path planning for autonomous underwater vehicles. IEEE Transactions on Robotics, 23, 331–341.CrossRef
Zurück zum Zitat Rahmaniar, W., & Rakhmania, A. E. (2022). Mobile robot path planning in a trajectory with multiple obstacles using genetic algorithms. Journal of Robotics and Control (JRC), 3(1), 1–7.CrossRef Rahmaniar, W., & Rakhmania, A. E. (2022). Mobile robot path planning in a trajectory with multiple obstacles using genetic algorithms. Journal of Robotics and Control (JRC), 3(1), 1–7.CrossRef
Zurück zum Zitat Szczepanski, R., Tarczewski, T., & Erwinski, K. (2022). Energy efficient local path planning algorithm based on predictive artificial potential field. IEEE Access, 10, 39729–39742.CrossRefMATH Szczepanski, R., Tarczewski, T., & Erwinski, K. (2022). Energy efficient local path planning algorithm based on predictive artificial potential field. IEEE Access, 10, 39729–39742.CrossRefMATH
Zurück zum Zitat Tabrizi, S. P. H. P., Reza, A., & Jameii, S. M. (2021). Enhanced path planning for automated nanites drug delivery based on reinforcement learning and polymorphic improved ant colony optimization. The Journal of Supercomputing, 77, 6714–6733.CrossRefMATH Tabrizi, S. P. H. P., Reza, A., & Jameii, S. M. (2021). Enhanced path planning for automated nanites drug delivery based on reinforcement learning and polymorphic improved ant colony optimization. The Journal of Supercomputing, 77, 6714–6733.CrossRefMATH
Zurück zum Zitat Wang, Z., Li, G., & Ren, J. (2021). Dynamic path planning for unmanned surface vehicle in complex offshore areas based on hybrid algorithm. Computer Communications, 166, 49–56.CrossRefMATH Wang, Z., Li, G., & Ren, J. (2021). Dynamic path planning for unmanned surface vehicle in complex offshore areas based on hybrid algorithm. Computer Communications, 166, 49–56.CrossRefMATH
Zurück zum Zitat Wu, H., Zhang, Y., & Huang, L. (2023). Research on vehicle obstacle avoidance path planning based on APF-PSO. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 237(6), 1391–1405.MATH Wu, H., Zhang, Y., & Huang, L. (2023). Research on vehicle obstacle avoidance path planning based on APF-PSO. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 237(6), 1391–1405.MATH
Zurück zum Zitat Xu, L., Cao, M., & Song, B. (2022). A new approach to smooth path planning of mobile robot based on quartic Bezier transition curve and improved PSO algorithm. Neurocomputing, 473, 98–106.CrossRefMATH Xu, L., Cao, M., & Song, B. (2022). A new approach to smooth path planning of mobile robot based on quartic Bezier transition curve and improved PSO algorithm. Neurocomputing, 473, 98–106.CrossRefMATH
Zurück zum Zitat Yang, H., Xu, X., & Hong, J. (2022). Automatic parking path planning of tracked vehicle based on improved A* and DWA algorithms. IEEE Transactions on Transportation Electrification, 9(1), 283–292.CrossRefMATH Yang, H., Xu, X., & Hong, J. (2022). Automatic parking path planning of tracked vehicle based on improved A* and DWA algorithms. IEEE Transactions on Transportation Electrification, 9(1), 283–292.CrossRefMATH
Zurück zum Zitat Zeng, Y., Yu, Y., & Zhao, X. (2021). Trajectory planning of spray gun with variable posture for irregular plane based on boundary constraint. IEEE Access, 9, 52902–52912.CrossRef Zeng, Y., Yu, Y., & Zhao, X. (2021). Trajectory planning of spray gun with variable posture for irregular plane based on boundary constraint. IEEE Access, 9, 52902–52912.CrossRef
Zurück zum Zitat Zhang, Z., He, R., & Yang, K. (2022). A bioinspired path planning approach for mobile robots based on improved sparrow search algorithm. Advances in Manufacturing, 10(1), 114–130.CrossRefMATH Zhang, Z., He, R., & Yang, K. (2022). A bioinspired path planning approach for mobile robots based on improved sparrow search algorithm. Advances in Manufacturing, 10(1), 114–130.CrossRefMATH
Zurück zum Zitat Zhao, D., & Huang, W. (2022). Improved path planning algorithm based on RRT algorithm and quintic B-spline curve//2022 IEEE 11th Data Driven Control and Learning Systems Conference (DDCLS). IEEE, 2022, 183–188. Zhao, D., & Huang, W. (2022). Improved path planning algorithm based on RRT algorithm and quintic B-spline curve//2022 IEEE 11th Data Driven Control and Learning Systems Conference (DDCLS). IEEE, 2022, 183–188.
Zurück zum Zitat Zhao, L., Wang, F., & Bai, Y. (2023). Route planning for autonomous vessels based on improved artificial fish swarm algorithm. Ships and Offshore Structures, 18(6), 897–906.CrossRefMATH Zhao, L., Wang, F., & Bai, Y. (2023). Route planning for autonomous vessels based on improved artificial fish swarm algorithm. Ships and Offshore Structures, 18(6), 897–906.CrossRefMATH
Metadaten
Titel
OBSTACLE AVOIDANCE PATH PLANNING FOR INTELLIGENT VEHICLES BASED ON SPARROW POTENTIAL FIELD IN MULTI-TYPE SCENARIOS
verfasst von
Qiping Chen
Siyuan Pi
Zhiqiang Jiang
Dequan Zeng
Yingqiang Zhong
Publikationsdatum
23.11.2024
Verlag
The Korean Society of Automotive Engineers
Erschienen in
International Journal of Automotive Technology / Ausgabe 1/2025
Print ISSN: 1229-9138
Elektronische ISSN: 1976-3832
DOI
https://doi.org/10.1007/s12239-024-00149-w