Skip to main content
Erschienen in: Journal of Inequalities and Applications 1/2015

Open Access 01.12.2015 | Research

On a multidimensional Hilbert-type inequality with parameters

verfasst von: Yanping Shi, Bicheng Yang

Erschienen in: Journal of Inequalities and Applications | Ausgabe 1/2015

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, by the use of the way of weight coefficients, the transfer formula, and the technique of real analysis, we introduce some proper parameters and obtain a multidimensional Hilbert-type inequality with the following kernel:
$$ \prod_{k=1}^{s}\frac{(\min\{\|m\|_{\alpha},c_{k}\|n\|_{\beta}\} )^{\frac{\gamma}{s}}}{(\max\{\|m\|_{\alpha},c_{k}\|n\|_{\beta}\})^{\frac {\lambda +\gamma}{s}}} $$
and a best possible constant factor. The equivalent form, the operator expressions with the norm, and some particular cases are also considered. The lemmas and theorems provide an extensive account of this type of inequalities.
Hinweise

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

BY carried out the mathematical studies, participated in the sequence alignment and drafted the manuscript. YS participated in the design of the study and performed the numerical analysis. All authors read and approved the final manuscript.

1 Introduction

If \(p>1\), \(\frac{1}{p}+\frac{1}{q}=1\), \(f(x),g(y)\geq0\), \(f\in L^{p}(\mathbf{R}_{+})\), \(g\in L^{q}(\mathbf{R}_{+})\), \(\|f\|_{p}=(\int_{0}^{\infty }f^{p}(x)\,dx)^{\frac{1}{p}}>0\), \(\|g\|_{q}>0\), then we have the following Hardy-Hilbert’s integral inequality (cf. [1]):
$$ \int_{0}^{\infty} \int_{0}^{\infty}\frac{f(x)g(y)}{x+y}\,dx\,dy< \frac{\pi }{\sin(\pi/p)} \|f\|_{p}\|g\|_{q}, $$
(1)
where the constant factor \(\frac{\pi}{\sin(\pi/p)}\) is the best possible. Assuming that \(a_{m},b_{n}\geq0\), \(a=\{a_{m}\}_{m=1}^{\infty }\in l^{p}\), \(b=\{b_{n}\}_{n=1}^{\infty}\in l^{q}\), \(\|a\|_{p}=(\sum_{m=1}^{ \infty}a_{m}^{p})^{\frac{1}{p}}>0\), \(\|b\|_{q}>0\), we have the following discrete Hardy-Hilbert’s inequality with the same best constant \(\frac {\pi}{\sin(\pi/p)}\):
$$ \sum_{m=1}^{\infty}\sum _{n=1}^{\infty}\frac{a_{m}b_{n}}{m+n}< \frac {\pi}{\sin(\pi/p)}\|a \|_{p}\|b\|_{q}. $$
(2)
Inequalities (1) and (2) are important in analysis and its applications (cf. [16]).
In 1998, by introducing an independent parameter \(\lambda\in(0,1]\), Yang [7] gave an extension of (1) at \(p=q=2\) with the kernel \(\frac{1}{(x+y)^{\lambda}}\). In recent years, Yang [3] and [4] gave some extensions of (1) and (2) as follows:
If \(\lambda_{1},\lambda_{2}\in\mathbf{R}\), \(\lambda_{1}+\lambda _{2}=\lambda\), \(k_{\lambda}(x,y)\) is a non-negative homogeneous function of degree −λ, with
$$ k(\lambda_{1})= \int_{0}^{\infty}k_{\lambda}(t,1)t^{\lambda _{1}-1}\,dt \in \mathbf{R}_{+}, $$
\(\phi(x)=x^{p(1-\lambda_{1})-1}\), \(\psi(x)=x^{q(1-\lambda _{2})-1}\), \(f(x),g(y)\geq0\),
$$ f\in L_{p,\phi}(\mathbf{R}_{+})= \biggl\{ f;\|f \|_{p,\phi }:=\biggl( \int_{0}^{\infty}\phi(x)\bigl|f(x)\bigr|^{p}\,dx \biggr)^{\frac{1}{p}}< \infty \biggr\} , $$
\(g\in L_{q,\psi}(\mathbf{R}_{+})\), \(\|f\|_{p,\phi},\|g\|_{q,\psi}>0\), then we have
$$ \int_{0}^{\infty} \int_{0}^{\infty}k_{\lambda }(x,y)f(x)g(y)\,dx\,dy< k( \lambda _{1})\|f\|_{p,\phi}\|g\|_{q,\psi}, $$
(3)
where the constant factor \(k(\lambda_{1})\) is the best possible. Moreover, if \(k_{\lambda}(x,y)\) is finite and \(k_{\lambda}(x,y)x^{\lambda _{1}-1}(k_{\lambda}(x,y)y^{\lambda_{2}-1})\) is decreasing with respect to \(x>0\) (\(y>0\)), then for \(a_{m},b_{n}\geq0\),
$$ a\in l_{p,\phi}= \Biggl\{ a;\|a\|_{p,\phi}:=\Biggl(\sum _{n=1}^{\infty}\phi (n)|a_{n}|^{p} \Biggr)^{\frac{1}{p}}< \infty \Biggr\} , $$
\(b=\{b_{n}\}_{n=1}^{\infty}\in l_{q,\psi}\), \(\|a\|_{p,\phi },\|b\|_{q,\psi }>0\), we have the following inequality:
$$ \sum_{m=1}^{\infty}\sum _{n=1}^{\infty}k_{\lambda }(m,n)a_{m}b_{n}< k( \lambda_{1})\|a\|_{p,\phi}\|b\|_{q,\psi}, $$
(4)
where the constant factor \(k(\lambda_{1})\) is still the best possible.
Clearly, for \(\lambda=1\), \(k_{1}(x,y)=\frac{1}{x+y}\), \(\lambda_{1}=\frac {1}{q}\), \(\lambda_{2}=\frac{1}{p}\), (3) reduces to (1), while (4) reduces to (2). Some other results including the multidimensional Hilbert-type integral, discrete, and half-discrete inequalities are provided by [826].
In this paper, by the use of the way of weight coefficients, the transfer formula and technique of real analysis, a multidimensional discrete Hilbert’s inequality with parameters and a best possible constant factor is given, which is an extension of (4) for
$$ k_{\lambda}(m,n)=\prod_{k=1}^{s} \frac{(\min\{m,c_{k}n\})^{\frac {\gamma}{s}}}{(\max\{m,c_{k}n\})^{\frac{\lambda+\gamma}{s}}}. $$
The equivalent form, the operator expressions with the norm, and some particular cases are also considered.

2 Some lemmas

If \(i_{0},j_{0}\in\mathbf{N}\) (N is the set of positive integers), \(\alpha ,\beta>0\), we put
$$ \begin{aligned} &\|x\|_{\alpha} := \Biggl( \sum_{k=1}^{i_{0}}|x_{k}|^{\alpha} \Biggr) ^{ \frac{1}{\alpha}}\quad\bigl(x=(x_{1},\ldots,x_{i_{0}})\in \mathbf{R}^{i_{0}}\bigr), \\ &\|y\|_{\beta} := \Biggl( \sum_{k=1}^{j_{0}}|y_{k}|^{\beta} \Biggr) ^{\frac{1}{\beta}}\quad\bigl(y=(y_{1},\ldots,y_{j_{0}})\in \mathbf{R}^{j_{0}}\bigr). \end{aligned} $$
(5)
Lemma 1
If \(g(t)\) (>0) is decreasing in \(\mathbf{R}_{+}\) and strictly decreasing in \([n_{0},\infty)\subset\mathbf{R}_{+}\) (\(n_{0}\in \mathbf{N}\)), satisfying \(\int_{0}^{\infty}g(t)\,dt\in\mathbf{R}_{+}\), then we have
$$ \int_{1}^{\infty}g(t)\,dt< \sum _{n=1}^{\infty}g(n)< \int_{0}^{\infty}g(t)\,dt. $$
(6)
Proof
Since by the assumption, we have
$$\begin{aligned}& \int_{n}^{n+1}g(t)\,dt \leq g(n)\leq \int_{n-1}^{n}g(t)\,dt\quad(n=1,\ldots,n_{0}),\\& \int_{n_{0}+1}^{n_{0}+2}g(t)\,dt < g(n_{0}+1)< \int_{n_{0}}^{n_{0}+1}g(t)\,dt, \end{aligned}$$
it follows that
$$ 0< \int_{1}^{n_{0}+2}g(t)\,dt< \sum _{n=1}^{n_{0}+1}g(n)< \sum_{n=1}^{n_{0}+1} \int_{n-1}^{n}g(t)\,dt= \int_{0}^{n_{0}+1}g(t)\,dt< \infty. $$
In the same way, we still have
$$ 0< \int_{n_{0}+2}^{\infty}g(t)\,dt\leq\sum _{n=n_{0}+2}^{\infty}g(n)\leq \int_{n_{0}+1}^{\infty}g(t)\,dt< \infty. $$
Hence, choosing plus for the above two inequalities, we have (6). □
Lemma 2
If \(s\in\mathbf{N}\), \(\gamma,M>0\), \(\Psi(u)\) is a non-negative measurable function in \((0,1]\), and
$$ D_{M}:= \Biggl\{ x\in\mathbf{R}_{+}^{s};\sum _{i=1}^{s}x_{i}^{\gamma} \leq M^{\gamma} \Biggr\} , $$
then we have the following transfer formula (cf. [27]):
$$\begin{aligned} &\int\cdots \int_{D_{M}}\Psi \Biggl( \sum_{i=1}^{s} \biggl( \frac {x_{i}}{M} \biggr) ^{\gamma} \Biggr)\,dx_{1}\cdots \,dx_{s} \\ &\quad=\frac{M^{s}\Gamma^{s}(\frac{1}{\gamma})}{\gamma^{s}\Gamma(\frac {s}{\gamma})} \int_{0}^{1}\Psi(u)u^{\frac{s}{\gamma}-1}\,du. \end{aligned}$$
(7)
Lemma 3
For \(s\in\mathbf{N}\), \(\gamma, \varepsilon>0\), we have
$$ \sum_{m}\|m\|_{\gamma}^{-s-\varepsilon}= \frac{\Gamma^{s}(\frac {1}{\gamma})}{\varepsilon s^{\varepsilon/\gamma}\gamma^{s-1}\Gamma(\frac {s}{\gamma})}+O(1) \quad\bigl(\varepsilon\rightarrow0^{+}\bigr), $$
(8)
where \(\sum_{m}=\sum_{m_{s}=1}^{\infty}\cdots\) \(\sum_{m_{1}=1}^{\infty}\).
Proof
For \(M>s^{1/\gamma}\), we set
$$ \Psi(u)=\left \{ \textstyle\begin{array}{@{}l@{\quad}l} 0, & 0< u< \frac{s}{M^{\gamma}}, \\ (Mu^{1/\gamma})^{-s-\varepsilon}, &\frac{s}{M^{\gamma}}\leq u\leq1.\end{array}\displaystyle \right . $$
Then by Lemma 1 and (7), it follows that
$$\begin{aligned} \sum_{m}\|m\|_{\gamma}^{-s-\varepsilon} \geq& \int_{\{x\in\mathbf{R} _{+}^{s};x_{i}\geq1\}}\|x\|_{\gamma}^{-s-\varepsilon}\,dx \\ =&\lim_{M\rightarrow\infty} \int\cdots \int_{D_{M}}\Psi \Biggl( \sum_{i=1}^{s} \biggl( \frac{x_{i}}{M} \biggr) ^{\gamma} \Biggr)\,dx_{1} \cdots \,dx_{s} \\ =&\lim_{M\rightarrow\infty}\frac{M^{s}\Gamma^{s}(\frac{1}{\gamma })}{\gamma^{s}\Gamma(\frac{s}{\gamma})} \int_{s/M^{\gamma }}^{1}\bigl(Mu^{1/\gamma } \bigr)^{-s-\varepsilon}u^{\frac{s}{\gamma}-1}\,du \\ =&\frac{\Gamma^{s}(\frac{1}{\gamma})}{\varepsilon s^{\varepsilon /\gamma }\gamma^{s-1}\Gamma(\frac{s}{\gamma})}. \end{aligned}$$
By Lemma 1 and in the above way, we still find
$$ 0< \sum_{\{m\in\mathbf{N}^{s};m_{i}\geq2\}}\|m\|_{\gamma }^{-s-\varepsilon }\leq \int_{\{x\in\mathbf{R}_{+}^{s};x_{i}\geq1\}}\|x\|_{\gamma }^{-s-\varepsilon}\,dx= \frac{\Gamma^{s}(\frac{1}{\gamma})}{\varepsilon s^{\varepsilon/\gamma}\gamma^{s-1}\Gamma(\frac{s}{\gamma})}. $$
For \(s=1\), \(0<\sum_{m=1}^{1}\|m\|_{\gamma}^{-1-\varepsilon}<\infty\); for \(s\geq2\),
$$\begin{aligned} 0 < &\sum_{\{m\in\mathbf{N}^{s};\exists i_{0},m_{i_{0}}=1\} }\|m\|_{\gamma }^{-s-\varepsilon} \leq a+\sum_{\{m\in\mathbf{N}^{s-1};m_{i}\geq 2\}}\|m\|_{\gamma}^{-(s-1)-(1+\varepsilon)} \\ \leq&a+\frac{\Gamma^{s-1}(\frac{1}{\gamma})}{(1+\varepsilon )(s-1)^{(1+\varepsilon)/\gamma}\gamma^{s-2}\Gamma(\frac{s-1}{\gamma })}< \infty\quad(a\in\mathbf{R}_{+}), \end{aligned}$$
and then
$$\begin{aligned} \sum_{m}\|m\|_{\gamma}^{-s-\varepsilon}&=\sum _{\{m\in\mathbf{N}^{s};\exists i_{0},m_{i_{0}}=1\}}\|m\|_{\gamma}^{-s-\varepsilon }+\sum _{\{m\in\mathbf{N}^{s};m_{i}\geq2\}}\|m\|_{\gamma }^{-s-\varepsilon} \\ &\leq O_{1}(1)+\frac{\Gamma^{s}(\frac{1}{\gamma})}{\varepsilon s^{\varepsilon/\gamma}\gamma^{s-1}\Gamma(\frac{s}{\gamma })}\quad\bigl(\varepsilon \rightarrow0^{+}\bigr). \end{aligned}$$
(9)
Then we have (8). □
Example 1
For \(s\in\mathbf{N}\), \(0< c_{1}\leq\cdots\leq c_{s}<\infty\), \(\lambda_{1},\lambda_{2}>-\gamma\), \(\lambda_{1}+\lambda _{2}=\lambda\), we set
$$ k_{\lambda}(x,y):=\prod_{k=1}^{s} \frac{(\min\{x,c_{k}y\})^{\frac {\gamma}{s}}}{(\max\{x,c_{k}y\})^{\frac{\lambda+\gamma}{s}}}\quad\bigl((x,y)\in\mathbf {R}_{+}^{2}= \mathbf{R}_{+}\times\mathbf{R}_{+}\bigr). $$
(a) We find
$$\begin{aligned} k_{s}(\lambda_{1}) :=& \int_{0}^{\infty}k_{\lambda}(1,u)u^{\lambda _{2}-1}\,du \overset{u=1/t}{=} \int_{0}^{\infty}k_{\lambda}(t,1)t^{\lambda _{1}-1}\,dt \\ =& \int_{0}^{\infty}\prod_{k=1}^{s} \frac{(\min\{t,c_{k}\})^{\frac {\gamma}{s}}}{(\max\{t,c_{k}\})^{\frac{\lambda+\gamma}{s}}}t^{\lambda _{1}-1}\,dt \\ =& \int_{0}^{c_{1}}\prod_{k=1}^{s} \frac{(\min\{t,c_{k}\})^{\frac {\gamma}{s}}t^{\lambda_{1}-1}}{(\max\{t,c_{k}\})^{\frac{\lambda+\gamma}{s}}}\,dt+ \int_{c_{s}}^{\infty}\prod_{k=1}^{s} \frac{(\min\{t,c_{k}\})^{\frac{ \gamma}{s}}t^{\lambda_{1}-1}}{(\max\{t,c_{k}\})^{\frac{\lambda +\gamma}{s}}}\,dt \\ &{}+\sum_{i=1}^{s-1} \int_{c_{i}}^{c_{i+1}}\prod_{k=1}^{s} \frac{(\min \{t,c_{k}\})^{\frac{\gamma}{s}}t^{\lambda_{1}-1}}{(\max\{t,c_{k}\})^{ \frac{\lambda+\gamma}{s}}}\,dt\\ =&\prod_{k=1}^{s}\frac{1}{c_{k}^{(\lambda+\gamma)/s}} \int _{0}^{c_{1}}t^{\lambda_{1}+\gamma-1}\,dt+\prod _{k=1}^{s}c_{k}^{\gamma /s} \int_{c_{s}}^{\infty}t^{-\lambda_{2}-\gamma-1}\,dt \\ &{}+\sum_{i=1}^{s-1} \int_{c_{i}}^{c_{i+1}}\prod_{k=1}^{i} \frac {c_{k}^{\frac{\gamma}{s}}}{t^{\frac{\lambda+\gamma}{s}}}\prod_{k=i+1}^{s} \frac {t^{\frac{\gamma}{s}}}{c_{k}^{\frac{\lambda+\gamma}{s}}}t^{\lambda_{1}-1}\,dt \\ =&\frac{c_{1}^{\lambda_{1}+\gamma}}{\lambda_{1}+\gamma}\frac{1}{\prod_{k=1}^{s}c_{k}^{\frac{\lambda+\gamma}{s}}}+\frac{1}{(\lambda _{2}+\gamma)c_{s}^{\lambda_{2}+\gamma}}\prod _{k=1}^{s}c_{k}^{\frac {\gamma }{s}} \\ &{}+\sum_{i=1}^{s-1}\frac{\prod_{k=1}^{i}c_{k}^{\frac{\gamma}{s}}}{\prod_{k=i+1}^{s}c_{k}^{\frac{\lambda+\gamma}{s}}}\int_{c_{i}}^{c_{i+1}}t^{\lambda_{1}-\frac{i\lambda}{s}+(1-\frac {2i}{s})\gamma-1}\,dt. \end{aligned}$$
If \(\lambda_{1}-\frac{i\lambda}{s}+(1-\frac{2i}{s})\gamma\neq0\), then
$$ \int_{c_{i}}^{c_{i+1}}t^{\lambda_{1}-\frac{i\lambda}{s}+(1-\frac {2i}{s})\gamma-1}\,dt=\frac{c_{i+1}^{\lambda_{1}-\frac{i\lambda}{s}+(1-\frac {2i}{s})\gamma}-c_{i}^{\lambda_{1}-\frac{i\lambda}{s}+(1-\frac {2i}{s})\gamma}}{\lambda_{1}-\frac{i\lambda}{s}+(1-\frac{2i}{s})\gamma}; $$
if there exists a \(i_{0}\in\{1,\ldots,s-1\}\), such that \(\lambda_{1}- \frac{i_{0}\lambda}{s}+(1-\frac{2i_{0}}{s})\gamma=0\), then we find
$$ \int_{c_{i_{0}}}^{c_{i_{0}+1}}t^{\lambda_{1}-\frac{i_{0}\lambda }{s}+(1-\frac{2i_{0}}{s})\gamma-1}\,dt=\ln\biggl( \frac{c_{i_{0}+1}}{c_{i_{0}}}\biggr)=\lim_{i\rightarrow i_{0}} \int_{c_{i}}^{c_{i+1}}t^{\lambda_{1}-\frac{i\lambda}{s}+(1-\frac{2i}{s})\gamma-1}\,dt, $$
and we still indicate \(\ln(\frac{c_{i_{0}+1}}{c_{i_{0}}})\) by the following formal expression:
$$ \frac{c_{i_{0}+1}^{\lambda_{1}-\frac{i_{0}\lambda}{s}+(1-\frac {2i_{0}}{s})\gamma}-c_{i_{0}}^{\lambda_{1}-\frac{i_{0}\lambda}{s}+(1-\frac {2i_{0}}{s})\gamma}}{\lambda_{1}-\frac{i_{0}\lambda}{s}+(1-\frac {2i_{0}}{s})\gamma}. $$
Hence, we may set
$$\begin{aligned} k_{s}(\lambda_{1}) =&\frac{c_{1}^{\lambda_{1}+\gamma}}{\lambda _{1}+\gamma} \frac{1}{\prod_{k=1}^{s}c_{k}^{\frac{\lambda+\gamma }{s}}}+\frac{1}{(\lambda_{2}+\gamma)c_{s}^{\lambda_{2}+\gamma}}\prod _{k=1}^{s}c_{k}^{\frac{\gamma}{s}} \\ &{}+\sum_{i=1}^{s-1} \biggl[ \frac{c_{i+1}^{\lambda_{1}-\frac{i\lambda }{s}+(1-\frac{2i}{s})\gamma}-c_{i}^{\lambda_{1}-\frac{i\lambda}{s}+(1-\frac {2i}{s})\gamma}}{\lambda_{1}-\frac{i\lambda}{s}+(1-\frac{2i}{s})\gamma }\frac{\prod_{k=1}^{i}c_{k}^{\frac{\gamma}{s}}}{\prod_{k=i+1}^{s}c_{k}^{\frac{ \lambda+\gamma}{s}}} \biggr] . \end{aligned}$$
(10)
In particular, (i) for \(s=1\) (or \(c_{s}=\cdots=c_{1}\)), we have \(k_{\lambda }(x,y)=\frac{(\min\{x,c_{1}y\})^{\gamma}}{(\max\{x,c_{1}y\})^{\lambda +\gamma}}\) and
$$ k_{1}(\lambda_{1})=\frac{\lambda+2\gamma}{(\lambda_{1}+\gamma )(\lambda _{2}+\gamma)}\frac{1}{c_{1}^{\lambda_{2}}}; $$
(11)
(ii) for \(s=2\), we have \(k_{\lambda}(x,y)=\frac{(\min\{x,c_{1}y\}\min \{x,c_{2}y\})^{\gamma/2}}{(\max\{x,c_{1}y\}\max\{x,c_{2}y\} )^{(\lambda +\gamma)/2}}\) and
$$ k_{2}(\lambda_{1})= \biggl( \frac{c_{1}}{c_{2}} \biggr) ^{\frac{\gamma }{2}} \biggl[ \frac{c_{1}^{\lambda_{1}-\frac{\lambda}{2}}}{(\lambda _{1}+\gamma )c_{2}^{\frac{\lambda}{2}}}+\frac{1}{(\lambda_{2}+\gamma )c_{2}^{\lambda _{2}}}+ \frac{c_{2}^{\lambda_{1}-\frac{\lambda}{2}}-c_{1}^{\lambda _{1}-\frac{\lambda}{2}}}{(\lambda_{1}-\frac{\lambda}{2})c_{2}^{\frac {\lambda}{2}}} \biggr] ; $$
(12)
(iii) for \(\gamma=0\), we have \(\lambda_{1},\lambda_{2}>0\), \(k_{\lambda }(x,y)=\frac{1}{\prod_{k=1}^{s}(\max\{x,c_{k}y\})^{\frac{\lambda }{s}}}\) and
$$\begin{aligned} k_{s}(\lambda_{1}) =&\widetilde{k}_{s}( \lambda_{1}):=\frac {c_{1}^{\lambda _{1}}}{\lambda_{1}}\frac{1}{\prod_{k=1}^{s}c_{k}^{\frac{\lambda}{s}}}+ \frac{1}{\lambda_{2}c_{s}^{\lambda_{2}}} \\ &{}+\sum_{i=1}^{s-1}\frac{c_{i+1}^{\lambda_{1}-\frac{i}{s}\lambda }-c_{i}^{\lambda_{1}-\frac{i}{s}\lambda}}{\lambda_{1}-\frac {i}{s}\lambda}\frac{1}{\prod_{k=i+1}^{s}c_{k}^{\frac{\lambda}{s}}}; \end{aligned}$$
(13)
(iv) for \(\gamma=-\lambda\), we have \(\lambda<\lambda_{1},\lambda_{2}<0\), \(k_{\lambda}(x,y)=\frac{1}{\prod_{k=1}^{s}(\min\{x,c_{k}y\})^{\frac{\lambda}{s}}}\) and
$$\begin{aligned} k_{s}(\lambda_{1}) =&\widehat{k}_{s}( \lambda_{1}):=\frac {c_{1}^{-\lambda _{2}}}{(-\lambda_{2})}+\frac{1}{(-\lambda_{1})c_{s}^{-\lambda_{1}}}\prod _{k=1}^{s}c_{k}^{\frac{-\lambda}{s}} +\sum_{i=1}^{s-1} \Biggl( \frac{c_{i+1}^{\lambda_{1}-\frac {s-i}{s}\lambda }-c_{i}^{\lambda_{1}-\frac{s-i}{s}\lambda}}{\lambda_{1}-\frac{s-i}{s} \lambda}\prod_{k=1}^{i}c_{k}^{\frac{-\lambda}{s}} \Biggr) ; \end{aligned}$$
(14)
(v) for \(\lambda=0\), we have \(\lambda_{2}=-\lambda_{1}\), \(|\lambda _{1}|<\gamma\) (\(\gamma>0\)),
$$ k_{0}(x,y)=\prod_{k=1}^{s} \biggl( \frac{\min\{x,c_{k}y\}}{\max\{ x,c_{k}y\}} \biggr) ^{\frac{\gamma}{s}}, $$
and
$$\begin{aligned} k_{s}(\lambda_{1}) =&k_{s}^{(0)}( \lambda_{1}):=\frac{c_{1}^{\lambda _{1}+\gamma}}{\gamma+\lambda_{1}}\frac{1}{\prod_{k=1}^{s}c_{k}^{\frac {\gamma}{s}}}+ \frac{c_{s}^{\lambda_{1}-\gamma}}{\gamma-\lambda_{1}}\prod_{k=1}^{s}c_{k}^{\frac{\gamma}{s}} \\ &{}+\sum_{i=1}^{s-1} \biggl[ \frac{c_{i+1}^{\lambda_{1}+(1-\frac {2i}{s})\gamma }-c_{i}^{\lambda_{1}+(1-\frac{2i}{s})\gamma}}{\lambda_{1}+(1-\frac {2i}{s})\gamma}\frac{\prod_{k=1}^{i}c_{k}^{\frac{\gamma}{s}}}{\prod_{k=i+1}^{s}c_{k}^{\frac{\gamma}{s}}} \biggr] . \end{aligned}$$
(15)
(b) Since for \(j_{0}\in\mathbf{N,}\) we find
$$\begin{aligned} k_{\lambda}(x,y)\frac{1}{y^{j_{0}-\lambda_{2}}}&=\frac {1}{y^{j_{0}-\lambda _{2}}}\prod _{k=1}^{s}\frac{(\min\{c_{k}^{-1}x,y\})^{\frac{\gamma }{s}}}{c_{k}^{\frac{\lambda}{s}}(\max\{c_{k}^{-1}x,y\})^{\frac{\lambda +\gamma}{s}}}\\ &=\left \{ \textstyle\begin{array}{@{}l@{\quad}l} \frac{1}{y^{j_{0}-\lambda_{2}-\gamma}}\prod_{k=1}^{s}\frac {1}{c_{k}^{\frac{\lambda}{s}}(c_{k}^{-1}x)^{\frac{\lambda+\gamma}{s}}}, &0< y\leq c_{s}^{-1}x, \\ \frac{1}{y^{j_{0}+\lambda_{1}+\gamma-\frac{i}{s}(\lambda+2\gamma )}}\frac{\prod_{k=i+1}^{s}(c_{k}^{-1}x)^{\frac{\gamma}{s}}}{\prod_{k=1}^{s}c_{k}^{\frac{\lambda}{s}}\prod_{k=1}^{i}(c_{k}^{-1}x)^{\frac{\lambda+\gamma }{s}}},& c_{i+1}^{-1}x< y\leq c_{i}^{-1}x\ (i=1,\ldots,s-1), \\ \frac{1}{y^{j_{0}+\lambda_{1}+\gamma}}\prod_{k=1}^{s}\frac {(c_{k}^{-1}x)^{\frac{\gamma}{s}}}{c_{k}^{\frac{\lambda}{s}}(y)^{\frac{\lambda +\gamma}{s}}},& c_{1}^{-1}x< y< \infty,\end{array}\displaystyle \right . \end{aligned}$$
for \(\lambda_{2}\leq j_{0}-\gamma\) (\(\lambda_{1}>-\gamma\)), \(k_{\lambda}(x,y)\frac{1}{y^{j_{0}-\lambda_{2}}}\) is decreasing for \(y>0\) and strictly decreasing for the large enough variable y. In the same way, for \(i_{0}\in\mathbf{N,}\) we find
$$\begin{aligned} k_{\lambda}(x,y)\frac{1}{x^{i_{0}-\lambda_{1}}}&=\frac {1}{x^{i_{0}-\lambda _{1}}}\prod _{k=1}^{s}\frac{(\min\{x,c_{k}y\})^{\frac{\gamma }{s}}}{(\max \{x,c_{k}y\})^{\frac{\lambda+\gamma}{s}}}\\ &=\left \{ \textstyle\begin{array}{@{}l@{\quad}l} \frac{1}{x^{i_{0}-\lambda_{1}-\gamma}}\prod_{k=1}^{s}\frac {1}{(c_{k}y)^{\frac{\lambda+\gamma}{s}}},& 0< x\leq c_{1}y, \\ \frac{1}{x^{i_{0}-\lambda_{1}-\gamma+\frac{i}{s}(\lambda+2\gamma )}}\frac{\prod_{k=1}^{i}(c_{k}y)^{\frac{\gamma}{s}}}{\prod_{k=i+1}^{s}(c_{k}y)^{ \frac{\lambda+\gamma}{s}}},& c_{i}y< x\leq c_{i+1}y \ (i=1,\ldots,s-1), \\ \frac{1}{x^{i_{0}+\lambda_{2}+\gamma}}\prod_{k=1}^{s}(c_{k}y)^{\frac{\gamma}{s}},& c_{s}y< x< \infty,\end{array}\displaystyle \right . \end{aligned}$$
then for \(\lambda_{1}\leq i_{0}-\gamma\) (\(\lambda_{2}>-\gamma\)), \(k_{\lambda}(x,y)\frac{1}{x^{i_{0}-\lambda_{1}}}\) is decreasing for \(x>0\) and strictly decreasing for the large enough variable x.
In view of the above results, for \(i_{0},j_{0}\in\mathbf{N}\), \(-\gamma <\lambda_{1}\leq i_{0}-\gamma\), \(-\gamma<\lambda_{2}\leq j_{0}-\gamma\), \(\lambda_{1}+\lambda_{2}=\lambda\), \(k_{\lambda}(x,y)\frac{1}{y^{j_{0}-\lambda_{2}}}\) (\(k_{\lambda}(x,y)\frac{1}{x^{i_{0}-\lambda _{1}}}\)) is still decreasing for \(y>0\) (\(x>0\)) and strictly decreasing for the large enough variable \(y(x)\).
Definition 1
For \(s,i_{0},j_{0}\in\mathbf{N}\), \(0< c_{1}\leq \cdots\leq c_{s}<\infty\), \(-\gamma<\lambda_{1}\leq i_{0}-\gamma\), \(-\gamma <\lambda_{2}\leq j_{0}-\gamma\), \(\lambda_{1}+\lambda_{2}=\lambda\), \(m=(m_{1},\ldots,m_{i_{0}})\in\mathbf{N}^{i_{0}}\), \(n=(n_{1},\ldots ,n_{j_{0}})\in\mathbf{N}^{j_{0}}\), define two weight coefficients \(w(\lambda_{1},n)\) and \(W(\lambda_{2},m)\) as follows:
$$\begin{aligned}& w(\lambda_{1},n) :=\sum_{m}\prod _{k=1}^{s}\frac{(\min\{\|m\|_{\alpha },c_{k}\|n\|_{\beta}\})^{\frac{\gamma}{s}}}{(\max\{\|m\|_{\alpha },c_{k}\|n\|_{\beta}\})^{\frac{\lambda+\gamma}{s}}} \frac{\|n\|_{\beta }^{\lambda_{2}}}{\|m\|_{\alpha}^{i_{0}-\lambda_{1}}}, \end{aligned}$$
(16)
$$\begin{aligned}& W(\lambda_{2},m) :=\sum_{n}\prod _{k=1}^{s}\frac{(\min\{\|m\|_{\alpha },c_{k}\|n\|_{\beta}\})^{\frac{\gamma}{s}}}{(\max\{\|m\|_{\alpha },c_{k}\|n\|_{\beta}\})^{\frac{\lambda+\gamma}{s}}} \frac {\|m\|_{\alpha }^{\lambda_{1}}}{\|n\|_{\beta}^{j_{0}-\lambda_{2}}}, \end{aligned}$$
(17)
where \(\sum_{m}=\sum_{m_{i_{0}}=1}^{\infty}\cdots\sum_{m_{1}=1}^{\infty}\) and \(\sum_{n}=\sum_{n_{j_{0}}=1}^{\infty}\cdots\sum_{n_{1}=1}^{\infty}\).
Lemma 4
As the assumptions of Definition  1, then (i) we have
$$\begin{aligned}& w(\lambda_{1},n) < K_{2}^{(s)}\quad\bigl(n\in \mathbf{N}^{j_{0}}\bigr), \end{aligned}$$
(18)
$$\begin{aligned}& W(\lambda_{2},m) < K_{1}^{(s)}\quad\bigl(m\in \mathbf{N}^{i_{0}}\bigr), \end{aligned}$$
(19)
where
$$ K_{1}^{(s)}=\frac{\Gamma^{j_{0}}(\frac{1}{\beta})}{\beta ^{j_{0}-1}\Gamma(\frac{j_{0}}{\beta})}k_{s}( \lambda_{1}),\qquad K_{2}^{(s)}=\frac{\Gamma ^{i_{0}}(\frac{1}{\alpha})}{\alpha^{i_{0}-1}\Gamma(\frac{i_{0}}{\alpha})}k_{s}( \lambda_{1}); $$
(20)
(ii) for \(p>1\), \(0<\varepsilon<\frac{p}{2}(\lambda_{1}+\gamma)\), setting \(\widetilde{\lambda}_{1}=\lambda_{1}-\frac{\varepsilon}{p}\) (\(\in (-\gamma ,i_{0}-\gamma)\)), \(\widetilde{\lambda}_{2}=\lambda_{2}+\frac {\varepsilon}{p}\) (\(>{-}\gamma\)), we have
$$ 0< \widetilde{K}_{2}^{(s)}\bigl(1-\widetilde{ \theta}_{\lambda }(n)\bigr)< w(\widetilde{\lambda}_{1},n), $$
(21)
where
$$\begin{aligned}& 0 < \widetilde{\theta}_{\lambda}(n)=\frac{1}{k_{s}(\widetilde {\lambda}_{1})} \int_{0}^{i_{0}^{1/\alpha}/\|n\|_{\beta}}\prod_{k=1}^{s} \frac {(\min \{v,c_{k}\})^{\frac{\gamma}{s}}v^{\widetilde{\lambda}_{1}-1}}{(\max \{v,c_{k}\})^{\frac{\lambda+\gamma}{s}}}\,dv =O \biggl( \frac{1}{\|n\|_{\beta}^{\gamma+\widetilde{\lambda}_{1}}} \biggr) , \end{aligned}$$
(22)
$$\begin{aligned}& \widetilde{K}_{2}^{(s)} =\frac{\Gamma^{i_{0}}(\frac{1}{\alpha })}{\alpha ^{i_{0}-1}\Gamma(\frac{i_{0}}{\alpha})}k_{s}( \widetilde{\lambda}_{1}). \end{aligned}$$
(23)
Proof
By Lemma 1, Example 1, and (7), it follows that
$$\begin{aligned} w(\lambda_{1},n) &< \int_{\mathbf{R}_{+}^{i_{0}}}\prod_{k=1}^{s} \frac {(\min \{\|x\|_{\alpha},c_{k}\|n\|_{\beta}\})^{\frac{\gamma}{s}}}{(\max \{\|x\|_{\alpha},c_{k}\|n\|_{\beta}\})^{\frac{\lambda+\gamma }{s}}}\frac{\|n\|_{\beta}^{\lambda_{2}}}{\|x\|_{\alpha}^{i_{0}-\lambda_{1}}}\,dx\\ &=\lim_{M\rightarrow\infty} \int_{\mathbf{D}_{M}}\prod_{k=1}^{s} \frac{ (\min\{M[\sum_{i=1}^{i_{0}}(\frac{x_{i}}{M})^{\alpha}]^{\frac {1}{\alpha}},c_{k}\|n\|_{\beta}\})^{\frac{\gamma}{s}}}{(\max\{M[\sum_{i=1}^{i_{0}}(\frac{x_{i}}{M})^{\alpha}]^{\frac{1}{\alpha}},c_{k}\|n\|_{\beta}\})^{ \frac{\lambda+\gamma}{s}}}\frac{M^{\lambda_{1}-i_{0}}\|n\|_{\beta }^{\lambda_{2}}\,dx}{[\sum_{i=1}^{i_{0}}(\frac{x_{i}}{M})^{\alpha }]^{\frac{i_{0}-\lambda_{1}}{\alpha}}}\\ &=\lim_{M\rightarrow\infty}\frac{M^{i_{0}}\Gamma^{i_{0}}(\frac {1}{\alpha })}{\alpha^{i_{0}}\Gamma(\frac{i_{0}}{\alpha})} \int_{0}^{1}\prod_{k=1}^{s}\frac{(\min\{Mu^{1/\alpha},c_{k}\|n\|_{\beta}\})^{\frac{\gamma }{s}}}{(\max\{Mu^{1/\alpha},c_{k}\|n\|_{\beta}\})^{\frac{\lambda+\gamma }{s}}}\frac{\|n\|_{\beta}^{\lambda_{2}}u^{\frac{i_{0}}{\alpha}-1}\,du}{M^{i_{0}-\lambda_{1}}u^{(i_{0}-\lambda_{1})/\alpha}} \\ &=\lim_{M\rightarrow\infty}\frac{M^{\lambda_{1}}\Gamma ^{i_{0}}(\frac{1}{\alpha})}{\alpha^{i_{0}}\Gamma(\frac{i_{0}}{\alpha})} \int_{0}^{1}\prod _{k=1}^{s}\frac{(\min\{Mu^{1/\alpha},c_{k}\|n\|_{\beta}\} )^{\frac{\gamma}{s}}\|n\|_{\beta}^{\lambda_{2}}}{(\max\{Mu^{1/\alpha },c_{k}\|n\|_{\beta}\})^{\frac{\lambda+\gamma}{s}}}u^{\frac{\lambda _{1}}{\alpha}-1}\,du \\ &\overset{u=\|n\|_{\beta}^{\alpha}M^{-\alpha}v^{\alpha}}{=}\frac {\Gamma ^{i_{0}}(\frac{1}{\alpha})}{\alpha^{i_{0}-1}\Gamma(\frac {i_{0}}{\alpha})}\int_{0}^{\infty}\prod_{k=1}^{s} \frac{(\min\{v,c_{k}\})^{\frac{\gamma }{s}}v^{\lambda_{1}-1}}{(\max\{v,c_{k}\})^{\frac{\lambda+\gamma}{s}}}\,dv \\ &=\frac{\Gamma^{i_{0}}(\frac{1}{\alpha})}{\alpha^{i_{0}-1}\Gamma (\frac{i_{0}}{\alpha})}k_{s}(\lambda_{1})=K_{2}^{(s)}. \end{aligned}$$
Hence, we have (18). In the same way, we have (19).
By Lemma 1, Example 1, and in the same way as obtaining (8), we have
$$\begin{aligned}& \begin{aligned}[b] w(\widetilde{\lambda}_{1},n)&> \int_{\{x\in\mathbf {R}_{+}^{i_{0}};x_{i}\geq1\}}\prod_{k=1}^{s} \frac{(\min\{\|x\|_{\alpha},c_{k}\|n\|_{\beta }\})^{\frac{\gamma}{s}}}{(\max\{\|x\|_{\alpha},c_{k}\|n\|_{\beta}\} )^{\frac{\lambda+\gamma}{s}}}\frac{\|n\|_{\beta}^{\widetilde{\lambda }_{2}}\,dx}{\|x\|_{\alpha}^{i_{0}-\widetilde{\lambda}_{1}}}\\ &=\frac{\Gamma^{i_{0}}(\frac{1}{\alpha})}{\alpha^{i_{0}-1}\Gamma (\frac{i_{0}}{\alpha})} \int_{i_{0}^{1/\alpha}/\|n\|_{\beta}}^{\infty }\prod_{k=1}^{s} \frac{(\min\{v,c_{k}\})^{\frac{\gamma }{s}}v^{\widetilde{\lambda}_{1}-1}}{(\max\{v,c_{k}\})^{\frac{\lambda+\gamma}{s}}}\,dv=\widetilde{K}_{2}^{(s)} \bigl(1-\widetilde{\theta}_{\lambda}(n)\bigr)>0, \end{aligned}\\& 0< \widetilde{\theta}_{\lambda}(n)=\frac{1}{k_{s}(\widetilde{\lambda }_{1})}\int_{0}^{i_{0}^{1/\alpha}/\|n\|_{\beta}}\prod_{k=1}^{s} \frac{(\min \{v,c_{k}\})^{\frac{\gamma}{s}}v^{\widetilde{\lambda}_{1}-1}}{(\max \{v,c_{k}\})^{\frac{\lambda+\gamma}{s}}}\,dv. \end{aligned}$$
For \(\|n\|_{\beta}\geq c_{1}^{-1}i_{0}^{1/\alpha}\), we find \(v\leq i_{0}^{1/\alpha}/\|n\|_{\beta}\leq c_{1}\leq c_{k}\) (\(k=1,\ldots,s\)) and
$$ \widetilde{\theta}_{\lambda}(n)=\frac{1}{k_{s}(\widetilde{\lambda }_{1})}\int_{0}^{i_{0}^{1/\alpha}/\|n\|_{\beta}}\frac{v^{\widetilde{\lambda} _{1}+\gamma-1}\,dv}{\prod_{k=1}^{s}c_{k}{}^{\frac{\lambda+\gamma}{s}}}= \frac{(\prod_{k=1}^{s}c_{k}{}^{\frac{\lambda+\gamma}{s}})^{-1}}{(\widetilde{\lambda}_{1}+\gamma)k_{s}(\widetilde{\lambda}_{1})} \biggl( \frac{i_{0}^{1/\alpha}}{\|n\|_{\beta}} \biggr) ^{\widetilde{\lambda}_{1}+\gamma}, $$
and then (22) follows. □

3 Main results

Setting \(\Phi(m):=\|m\|_{\alpha}^{p(i_{0}-\lambda_{1})-i_{0}}\) (\(m\in \mathbf{N}^{i_{0}}\)) and \(\Psi(n):=\|n\|_{\beta}^{q(j_{0}-\lambda _{2})-j_{0}}\) (\(n\in\mathbf{N}^{j_{0}}\)), we have the following.
Theorem 1
If \(s,i_{0},j_{0}\in\mathbf{N}\), \(0< c_{1}\leq\cdots \leq c_{s}<\infty\), \(-\gamma<\lambda_{1}\leq i_{0}-\gamma\), \(-\gamma <\lambda_{2}\leq j_{0}-\gamma\), \(\lambda_{1}+\lambda_{2}=\lambda\), \(k_{s}(\lambda_{1})\) is indicated by (10), then for \(p>1\), \(\frac {1}{p}+\frac{1}{q}=1\), \(a_{m},b_{n}\geq0\), \(0<\|a\|_{p,\Phi},\|b\|_{q,\Psi }<\infty\), we have the following inequality:
$$\begin{aligned} I :=&\sum_{n}\sum_{m} \prod_{k=1}^{s}\frac{(\min\{\|m\|_{\alpha },c_{k}\|n\|_{\beta}\})^{\frac{\gamma}{s}}}{(\max\{\|m\|_{\alpha },c_{k}\|n\|_{\beta}\})^{\frac{\lambda+\gamma}{s}}}a_{m}b_{n} \\ < &\bigl(K_{1}^{(s)}\bigr)^{\frac{1}{p}} \bigl(K_{2}^{(s)}\bigr)^{\frac{1}{q}}\|a\|_{p,\Phi} \|b\|_{q,\Psi}, \end{aligned}$$
(24)
where the constant factor
$$ \bigl(K_{1}^{(s)}\bigr)^{\frac{1}{p}}\bigl(K_{2}^{(s)} \bigr)^{\frac{1}{q}}= \biggl[ \frac {\Gamma ^{j_{0}}(\frac{1}{\beta})}{\beta^{j_{0}-1}\Gamma(\frac{j_{0}}{\beta })} \biggr] ^{\frac{1}{p}} \biggl[ \frac{\Gamma^{i_{0}}(\frac{1}{\alpha })}{\beta ^{i_{0}-1}\Gamma(\frac{i_{0}}{\alpha})} \biggr] ^{\frac {1}{q}}k_{s}( \lambda _{1}) $$
(25)
is the best possible. In particular, for \(s=1\) (or \(c_{s}=\cdots=c_{1}\)), we have the following inequality:
$$ \sum_{n}\sum_{m} \frac{(\min\{\|m\|_{\alpha},c_{1}\|n\|_{\beta}\} )^{\gamma }a_{m}b_{n}}{(\max\{\|m\|_{\alpha},c_{1}\|n\|_{\beta}\})^{\lambda +\gamma }}< \bigl(K_{1}^{(1)}\bigr)^{\frac{1}{p}} \bigl(K_{2}^{(1)}\bigr)^{\frac{1}{q}}\|a\|_{p,\Phi } \|b\|_{q,\Psi}, $$
(26)
where
$$\begin{aligned} &\bigl(K_{1}^{(1)}\bigr)^{\frac{1}{p}} \bigl(K_{2}^{(1)}\bigr)^{\frac{1}{q}} \\ &\quad= \biggl[ \frac{\Gamma^{j_{0}}(\frac{1}{\beta})}{\beta ^{j_{0}-1}\Gamma(\frac{j_{0}}{\beta})} \biggr] ^{\frac{1}{p}} \biggl[ \frac{\Gamma ^{i_{0}}(\frac{1}{\alpha})}{\beta^{i_{0}-1}\Gamma(\frac{i_{0}}{\alpha })} \biggr] ^{\frac{1}{q}}\frac{(\lambda+2\gamma)c_{1}^{-\lambda_{2}}}{(\lambda _{1}+\gamma)(\lambda_{2}+\gamma)}. \end{aligned}$$
(27)
Proof
By Hölder’s inequality (cf. [28]), we have
$$\begin{aligned} I =&\sum_{n}\sum_{m} \prod_{k=1}^{s}\frac{(\min\{\|m\|_{\alpha },c_{k}\|n\|_{\beta}\})^{\frac{\gamma}{s}}}{(\max\{\|m\|_{\alpha },c_{k}\|n\|_{\beta}\})^{\frac{\lambda+\gamma}{s}}} \biggl[ \frac{\|m\|_{\alpha}^{(i_{0}-\lambda _{1})/q}}{\|n\|_{\beta }^{(j_{0}-\lambda_{2})/p}}a_{m} \biggr] \biggl[ \frac{\|n\|_{\beta }^{(j_{0}-\lambda_{2})/p}}{\|m\|_{\alpha}^{(i_{0}-\lambda _{1})/q}}b_{n} \biggr]\\ \leq& \biggl\{ \sum_{m}W(\lambda_{2},m) \|m\|_{\alpha}^{p(i_{0}-\lambda _{1})-i_{0}}a_{m}^{p} \biggr\} ^{\frac{1}{p}} \biggl\{ \sum_{n}w(\lambda_{1},n) \|n\|_{\beta }^{q(j_{0}-\lambda _{2})-j_{0}}b_{n}^{q} \biggr\} ^{\frac{1}{q}}. \end{aligned}$$
Then by (18) and (19), we have (24).
For \(0<\varepsilon<\frac{p}{2}(\lambda_{1}+\gamma)\), \(\widetilde {\lambda}_{1}=\lambda_{1}-\frac{\varepsilon}{p}\), \(\widetilde{\lambda }_{2}=\lambda _{2}+\frac{\varepsilon}{p}\), we set
$$ \widetilde{a}_{m}=\|m\|_{\alpha}^{-i_{0}+\lambda_{1}-\frac {\varepsilon}{p}}=\|m \|_{\alpha}^{\widetilde{\lambda}_{1}-i_{0}}, \qquad\widetilde{b}_{n}=\|n \|_{\beta}^{\widetilde{\lambda}_{2}-j_{0}-\varepsilon} \quad\bigl(m\in \mathbf{N}^{i_{0}},n\in \mathbf{N}^{j_{0}}\bigr). $$
Then by (8) and (21), we obtain
$$\begin{aligned}& \begin{aligned}[b] \|\widetilde{a}\|_{p,\Phi}\|\widetilde{b}\|_{q,\Psi}={}& \biggl[ \sum _{m}\|m\|_{\alpha}^{p(i_{0}-\lambda_{1})-i_{0}}\widetilde {a}_{m}^{p} \biggr] ^{\frac{1}{p}} \biggl[ \sum _{n}\|n\|_{\beta}^{q(j_{0}-\lambda _{2})-j_{0}} \widetilde{b}_{n}^{q} \biggr] ^{\frac{1}{q}} \\ ={}& \biggl( \sum_{m}\|m\|_{\alpha}^{-i_{0}-\varepsilon} \biggr) ^{\frac {1}{p}} \biggl( \sum_{n}\|n \|_{\beta}^{-j_{0}-\varepsilon} \biggr) ^{\frac{1}{q}} \\ ={}&\frac{1}{\varepsilon} \biggl( \frac{\Gamma^{i_{0}}(\frac{1}{\alpha })}{i_{0}^{\varepsilon/\alpha}\alpha^{i_{0}-1}\Gamma(\frac {i_{0}}{\alpha})}+\varepsilon O(1) \biggr) ^{\frac{1}{p}} \\ &{}\times \biggl( \frac{\Gamma^{j_{0}}(\frac{1}{\beta })}{j_{0}^{\varepsilon /\beta}\beta^{j_{0}-1}\Gamma(\frac{j_{0}}{\beta})} +\varepsilon \widetilde{O}(1) \biggr) ^{\frac{1}{q}}, \end{aligned} \end{aligned}$$
(28)
$$\begin{aligned}& \begin{aligned}[b] \widetilde{I} &:=\sum_{n} \Biggl[ \sum _{m}\prod_{k=1}^{s} \frac{(\min \{\|m\|_{\alpha},c_{k}\|n\|_{\beta}\})^{\frac{\gamma}{s}}}{(\max \{\|m\|_{\alpha},c_{k}\|n\|_{\beta}\})^{\frac{\lambda+\gamma}{s}}}\widetilde{a}_{m} \Biggr] \widetilde{b}_{n} \\ &=\sum_{n}w(\widetilde{\lambda}_{1},n) \|n\|_{\beta }^{-j_{0}-\varepsilon}>\widetilde{K}_{2}^{(s)} \sum_{n} \biggl( 1-O\biggl(\frac{1}{\|n\|_{\beta }^{\gamma+\widetilde{\lambda}_{1}}} \biggr) \biggr) \|n\|_{\beta}^{-j_{0}-\varepsilon} \\ &=\widetilde{K}_{2}^{(s)} \biggl( \sum _{n}\|n\|_{\beta }^{-j_{0}-\varepsilon }-\sum _{n}O\biggl(\frac{1}{\|n\|_{\beta}^{\gamma+\lambda_{1}+j_{0}+\frac{\varepsilon}{q}}}\biggr) \biggr) \\ &=\widetilde{K}_{2}^{(s)} \biggl( \frac{\Gamma^{j_{0}}(\frac{1}{\beta })}{\varepsilon j_{0}^{\varepsilon/\beta}\beta^{j_{0}-1}\Gamma(\frac {j_{0}}{\beta})}+ \widetilde{O}(1)-O(1) \biggr) . \end{aligned} \end{aligned}$$
(29)
If there exists a constant \(K\leq(K_{1}^{(s)})^{\frac {1}{p}}(K_{2}^{(s)})^{\frac{1}{q}}\), such that (24) is valid as we replace \((K_{1}^{(s)})^{\frac{1}{p}}(K_{2}^{(s)})^{\frac{1}{q}}\) by K, then using (28) and (29) we have
$$\begin{aligned} &\bigl(K_{2}^{(s)}+o(1)\bigr) \biggl( \frac{\Gamma^{j_{0}}(\frac{1}{\beta})}{j_{0}^{\varepsilon/\beta}\beta^{j_{0}-1}\Gamma(\frac{j_{0}}{\beta })}+ \varepsilon\widetilde{O}(1)-\varepsilon O(1) \biggr)< \varepsilon \widetilde{I} < \varepsilon K\|\widetilde{a}\|_{p,\varphi}\|\widetilde{b} \|_{q,\psi } \\ &\quad=K \biggl( \frac{\Gamma^{i_{0}}(\frac{1}{\alpha})}{i_{0}^{\varepsilon /\alpha}\alpha^{i_{0}-1}\Gamma(\frac{i_{0}}{\alpha})}+\varepsilon O(1) \biggr) ^{\frac{1}{p}} \biggl( \frac{\Gamma^{j_{0}}(\frac{1}{\beta })}{j_{0}^{\varepsilon /\beta}\beta^{j_{0}-1}\Gamma(\frac{j_{0}}{\beta})}+\varepsilon \widetilde{O}(1) \biggr) ^{\frac{1}{q}}. \end{aligned}$$
For \(\varepsilon\rightarrow0^{+}\), we find
$$\begin{aligned} &\frac{\Gamma^{j_{0}}(\frac{1}{\beta})}{\beta^{j_{0}-1}\Gamma(\frac {j_{0}}{\beta})}\frac{\Gamma^{i_{0}}(\frac{1}{\alpha})}{\alpha ^{i_{0}-1}\Gamma(\frac{i_{0}}{\alpha})}k_{s}(\lambda_{1}) \leq K \biggl( \frac{\Gamma^{i_{0}}(\frac{1}{\alpha})}{\alpha ^{i_{0}-1}\Gamma(\frac{i_{0}}{\alpha})} \biggr) ^{\frac{1}{p}} \biggl( \frac{\Gamma^{j_{0}}(\frac{1}{\beta})}{\beta^{j_{0}-1}\Gamma(\frac{j_{0}}{ \beta})} \biggr) ^{\frac{1}{q}}, \end{aligned}$$
and then \((K_{1}^{(s)})^{\frac{1}{p}}(K_{2}^{(s)})^{\frac{1}{q}}\leq K\). Hence, \(K=(K_{1}^{(s)})^{\frac{1}{p}}(K_{2}^{(s)})^{\frac{1}{q}}\) is the best possible constant factor of (24). □
Theorem 2
As regards the assumptions of Theorem  1, for \(0<\|a\|_{p,\Phi }<\infty\), we have the following inequality with the best constant factor \((K_{1}^{(s)})^{\frac{1}{p}}(K_{2}^{(s)})^{\frac{1}{q}}\):
$$\begin{aligned} J :=& \Biggl\{ \sum_{n}\|n\|_{\beta}^{p\lambda_{2}-j_{0}} \Biggl[ \sum_{m}\prod _{k=1}^{s}\frac{(\min\{\|m\|_{\alpha},c_{k}\|n\|_{\beta }\})^{\frac{\gamma}{s}}}{(\max\{\|m\|_{\alpha},c_{k}\|n\|_{\beta}\} )^{\frac{\lambda+\gamma}{s}}}a_{m} \Biggr] ^{p} \Biggr\} ^{\frac{1}{p}} \\ < &\bigl(K_{1}^{(s)}\bigr)^{\frac{1}{p}} \bigl(K_{2}^{(s)}\bigr)^{\frac{1}{q}}\|a\|_{p,\Phi}, \end{aligned}$$
(30)
which is equivalent to (24). In particular, for \(s=1\) (or \(c_{s}=\cdots=c_{1}\)), we have the following inequality equivalent to (26):
$$\begin{aligned} & \biggl\{ \sum_{n}\|n\|_{\beta}^{p\lambda_{2}-j_{0}} \biggl[ \sum_{m}\frac{(\min\{\|m\|_{\alpha},c_{1}\|n\|_{\beta}\})^{\gamma}}{(\max \{\|m\|_{\alpha},c_{1}\|n\|_{\beta}\})^{\lambda+\gamma}}a_{m} \biggr] ^{p} \biggr\} ^{\frac{1}{p}} < \bigl(K_{1}^{(1)}\bigr)^{\frac{1}{p}} \bigl(K_{2}^{(1)}\bigr)^{\frac{1}{q}}\|a\|_{p,\Phi}. \end{aligned}$$
(31)
Proof
We set \(b_{n}\) as follows:
$$ b_{n}:=\|n\|_{\beta}^{p\lambda_{2}-j_{0}} \Biggl( \sum _{m}\prod_{k=1}^{s}\frac{(\min\{\|m\|_{\alpha},c_{k}\|n\|_{\beta}\})^{\frac{\gamma }{s}}}{(\max\{\|m\|_{\alpha},c_{k}\|n\|_{\beta}\})^{\frac{\lambda+\gamma }{s}}}a_{m} \Biggr) ^{p-1},\quad n\in \mathbf{N}^{j_{0}}. $$
Then it follows that \(J^{p}=\|b\|_{q,\Psi}^{q}\). If \(J=0\), then (30) is trivially valid for \(0<\|a\|_{p,\Phi}<\infty\); if \(J=\infty\), then it is impossible since the right hand side of (30) is finite. Suppose that \(0< J<\infty\). Then by (24), we find
$$ \|b\|_{q,\Psi}^{q}=J^{p}=I< \bigl(K_{1}^{(s)} \bigr)^{\frac {1}{p}}\bigl(K_{2}^{(s)}\bigr)^{\frac{1}{q}} \|a\|_{p,\Phi}\|b\|_{q,\Psi}, $$
namely,
$$ \|b\|_{q,\Psi}^{q-1}=J< \bigl(K_{1}^{(s)} \bigr)^{\frac{1}{p}}\bigl(K_{2}^{(s)}\bigr)^{\frac {1}{q}} \|a\|_{p,\Phi}, $$
and then (30) follows.
On the other hand, assuming that (30) is valid, by Hölder’s inequality, we have
$$\begin{aligned} I =&\sum_{n}\bigl(\Psi(n)\bigr)^{\frac{-1}{q}} \Biggl[ \sum_{m}\prod_{k=1}^{s} \frac{(\min\{\|m\|_{\alpha},c_{k}\|n\|_{\beta}\})^{\frac{\gamma }{s}}a_{m}}{(\max\{\|m\|_{\alpha},c_{k}\|n\|_{\beta}\})^{\frac{\lambda+\gamma }{s}}} \Biggr] \bigl[\bigl(\Psi(n)\bigr)^{\frac{1}{q}}b_{n} \bigr] \\ \leq&J\|b\|_{q,\Psi}. \end{aligned}$$
(32)
Then by (30), we have (24). Hence (30) and (24) are equivalent.
By the equivalency, the constant factor \((K_{1}^{(s)})^{\frac{1}{p}}(K_{2}^{(s)})^{\frac{1}{q}}\) in (30) is the best possible. Otherwise, we would reach a contradiction by (32) that the constant factor \((K_{1}^{(s)})^{\frac{1}{p}}(K_{2}^{(s)})^{\frac{1}{q}}\) in (24) is not the best possible. □

4 Operator expressions and some particular cases

For \(p>1\), we define two real weight normal discrete spaces \(l_{p,\varphi}\) and \(l_{q,\psi}\) as follows:
$$\begin{aligned}& l_{p,\varphi} := \biggl\{ a=\{a_{m}\};\|a\|_{p,\Phi}= \biggl(\sum_{m}\Phi (m)a_{m}^{p} \biggr)^{\frac{1}{p}}< \infty \biggr\} , \\& l_{q,\psi} := \biggl\{ b=\{b_{n}\};\|b\|_{q,\Psi}= \biggl(\sum_{n}\Psi (n)b_{n}^{q} \biggr)^{\frac{1}{q}}< \infty \biggr\} . \end{aligned}$$
As regards the assumptions of Theorem 1, in view of \(J<(K_{1}^{(s)})^{\frac{1}{p}}(K_{2}^{(s)})^{\frac{1}{q}}\|a\|_{p,\Phi}\), we give the following definition.
Definition 2
Define a multidimensional Hilbert-type operator \(T:l_{p,\Phi}\rightarrow l_{p,\Psi^{1-p}}\) as follows: For \(a\in l_{p,\Phi }\), there exists an unique representation \(Ta\in l_{p,\Psi^{1-p}}\), satisfying
$$ Ta(n):=\sum_{m}\prod _{k=1}^{s}\frac{(\min\{\|m\|_{\alpha },c_{k}\|n\|_{\beta}\})^{\frac{\gamma}{s}}}{(\max\{\|m\|_{\alpha },c_{k}\|n\|_{\beta}\})^{\frac{\lambda+\gamma}{s}}}a_{m}\quad\bigl(n \in\mathbf {N}^{j_{0}}\bigr). $$
(33)
For \(b\in l_{q,\Psi}\), we define the following formal inner product of Ta and b as follows:
$$ (Ta,b):=\sum_{n}\sum_{m} \prod_{k=1}^{s}\frac{(\min\{\|m\|_{\alpha },c_{k}\|n\|_{\beta}\})^{\frac{\gamma}{s}}}{(\max\{\|m\|_{\alpha },c_{k}\|n\|_{\beta}\})^{\frac{\lambda+\gamma}{s}}}a_{m}b_{n}. $$
(34)
Then by Theorem 1 and Theorem 2, for \(0<\|a\|_{p,\varphi},\|b\|_{q,\psi }<\infty\), we have the following equivalent inequalities:
$$\begin{aligned}& (Ta,b) < \bigl(K_{1}^{(s)}\bigr)^{\frac{1}{p}} \bigl(K_{2}^{(s)}\bigr)^{\frac{1}{q}}\|a\|_{p,\Phi} \|b\|_{q,\Psi}, \end{aligned}$$
(35)
$$\begin{aligned}& \|Ta\|_{p,\Psi^{1-p}} < \bigl(K_{1}^{(s)} \bigr)^{\frac {1}{p}}\bigl(K_{2}^{(s)}\bigr)^{\frac{1}{q}} \|a\|_{p,\Phi}. \end{aligned}$$
(36)
It follows that T is bounded with
$$ \|T\|:=\sup_{a(\neq\theta)\in l_{p,\Phi}}\frac{\|Ta\|_{p,\Psi ^{1-p}}}{\|a\|_{p,\Phi}}\leq\bigl(K_{1}^{(s)} \bigr)^{\frac{1}{p}}\bigl(K_{2}^{(s)}\bigr)^{\frac{1}{q}}. $$
(37)
Since the constant factor \((K_{1}^{(s)})^{\frac {1}{p}}(K_{2}^{(s)})^{\frac{1}{q}}\) in (36) is the best possible, we have the following.
Corollary 1
As regards the assumptions of Theorem  2, T is defined by Definition  2, it follows that
$$\begin{aligned} \|T\| =&\bigl(K_{1}^{(s)}\bigr)^{\frac{1}{p}} \bigl(K_{2}^{(s)}\bigr)^{\frac{1}{q}} \\ =& \biggl[ \frac{\Gamma^{j_{0}}(\frac{1}{\beta})}{\beta ^{j_{0}-1}\Gamma(\frac{j_{0}}{\beta})} \biggr] ^{\frac{1}{p}} \biggl[ \frac{\Gamma ^{i_{0}}(\frac{1}{\alpha})}{\alpha^{i_{0}-1}\Gamma(\frac{i_{0}}{\alpha })} \biggr] ^{\frac{1}{q}}k_{s}(\lambda_{1}). \end{aligned}$$
(38)
Remark 1
(i) For \(i_{0}=j_{0}=1\) in (24), we have the inequality
$$ \sum_{m=1}^{\infty}\sum _{n=1}^{\infty}\prod_{k=1}^{s} \frac{(\min \{m,c_{k}n\})^{\frac{\gamma}{s}}}{(\max\{m,c_{k}n\})^{\frac{\lambda +\gamma}{s}}}a_{m}b_{n}< k_{s}( \lambda_{1})\|a\|_{p,\phi }\|b\|_{q,\psi}. $$
(39)
Hence, (24) is an extension of (4) for
$$ k_{\lambda}(m,n)=\prod_{k=1}^{s} \frac{(\min\{m,c_{k}n\})^{\frac {\gamma}{s}}}{(\max\{m,c_{k}n\})^{\frac{\lambda+\gamma}{s}}}. $$
(ii) For \(\gamma=0\) in (24) and (30), we have \(0<\lambda _{1}\leq i_{0}\), \(0<\lambda_{2}\leq j_{0}\) and the following equivalent inequalities:
$$\begin{aligned}& \sum_{n}\sum_{m} \frac{a_{m}b_{n}}{\prod_{k=1}^{s}(\max\{\|m\|_{\alpha },c_{k}\|n\|_{\beta}\})^{\frac{\lambda}{s}}}< \widetilde{K}_{s}(\lambda _{1})\|a \|_{p,\Phi}\|b\|_{q,\Psi}, \end{aligned}$$
(40)
$$\begin{aligned}& \biggl\{ \sum_{n}\|n\|_{\beta}^{p\lambda_{2}-j_{0}} \biggl[ \sum_{m}\frac {a_{m}}{\prod_{k=1}^{s}(\max\{\|m\|_{\alpha},c_{k}\|n\|_{\beta}\} )^{\frac{\lambda}{s}}} \biggr] ^{p} \biggr\} ^{\frac{1}{p}}< \widetilde {K}_{s}(\lambda _{1})\|a\|_{p,\Phi}, \end{aligned}$$
(41)
where the best possible constant factor is defined by
$$ \widetilde{K}_{s}(\lambda_{1}):= \biggl[ \frac{\Gamma^{j_{0}}(\frac {1}{\beta })}{\beta^{j_{0}-1}\Gamma(\frac{j_{0}}{\beta})} \biggr] ^{\frac{1}{p}} \biggl[ \frac{\Gamma^{i_{0}}(\frac{1}{\alpha})}{\beta^{i_{0}-1}\Gamma (\frac{i_{0}}{\alpha})} \biggr] ^{\frac{1}{q}}\widetilde{k}_{s}(\lambda_{1}), $$
(42)
and \(\widetilde{k}_{s}(\lambda_{1})\) is indicated by (13).
(iii) For \(\gamma=-\lambda\) in (24) and (30), we have \(\lambda<\lambda_{1}\leq i_{0}+\lambda\), \(\lambda<\lambda_{2}\leq j_{0}+\lambda\), \(\lambda_{1},\lambda_{2}<0\) and the following equivalent inequalities:
$$\begin{aligned}& \sum_{n}\sum_{m} \frac{a_{m}b_{n}}{\prod_{k=1}^{s}(\min\{\|m\|_{\alpha },c_{k}\|n\|_{\beta}\})^{\frac{\lambda}{s}}}< \widehat{K}_{s}(\lambda _{1})\|a \|_{p,\Phi}\|b\|_{q,\Psi}, \end{aligned}$$
(43)
$$\begin{aligned}& \biggl\{ \sum_{n}\|n\|_{\beta}^{p\lambda_{2}-j_{0}} \biggl[ \sum_{m}\frac {a_{m}}{\prod_{k=1}^{s}(\min\{\|m\|_{\alpha},c_{k}\|n\|_{\beta}\} )^{\frac{\lambda}{s}}} \biggr] ^{p} \biggr\} ^{\frac{1}{p}}< \widetilde {K}_{s}(\lambda _{1})\|a\|_{p,\Phi}, \end{aligned}$$
(44)
where the best possible constant factor is defined by
$$ \widehat{K}_{s}(\lambda_{1}):= \biggl[ \frac{\Gamma^{j_{0}}(\frac {1}{\beta})}{\beta^{j_{0}-1}\Gamma(\frac{j_{0}}{\beta})} \biggr] ^{\frac {1}{p}} \biggl[ \frac{\Gamma^{i_{0}}(\frac{1}{\alpha})}{\beta^{i_{0}-1}\Gamma(\frac {i_{0}}{\alpha})} \biggr] ^{\frac{1}{q}} \widehat{k}_{s}(\lambda_{1}), $$
(45)
and \(\widehat{k}_{s}(\lambda_{1})\) is indicated by (14).
(iv) For \(\lambda=0\) in (24) and (30), we have \(\lambda _{2}=-\lambda_{1}\), \(0<\gamma+\lambda_{1}\leq i_{0}\), \(0<\gamma-\lambda _{1}\leq j_{0}\) (\(\gamma>0\)), and the following equivalent inequalities:
$$\begin{aligned}& \sum_{n}\sum_{m} \prod_{k=1}^{s} \biggl( \frac{\min\{\|m\|_{\alpha },c_{k}\|n\|_{\beta}\}}{\max\{\|m\|_{\alpha},c_{k}\|n\|_{\beta}\}} \biggr) ^{\frac{\gamma}{s}}a_{m}b_{n}< K_{s}^{(0)}( \lambda _{1})\|a\|_{p,\Phi}\|b\|_{q,\Psi}, \end{aligned}$$
(46)
$$\begin{aligned}& \begin{aligned}[b] & \Biggl\{ \sum_{n}\frac{1}{\|n\|_{\beta}^{p\lambda_{1}+j_{0}}} \Biggl[ \sum_{m}\prod_{k=1}^{s} \biggl( \frac{\min\{\|m\|_{\alpha },c_{k}\|n\|_{\beta }\}}{\max\{\|m\|_{\alpha},c_{k}\|n\|_{\beta}\}} \biggr) ^{\frac {\gamma}{s}}a_{m} \Biggr] ^{p} \Biggr\} ^{\frac{1}{p}} \\ &\quad< K_{s}^{(0)}(\lambda_{1})\|a\|_{p,\Phi}, \end{aligned} \end{aligned}$$
(47)
where the best possible constant factor is defined by
$$ K_{s}^{(0)}(\lambda_{1}):= \biggl[ \frac{\Gamma^{j_{0}}(\frac{1}{\beta })}{\beta^{j_{0}-1}\Gamma(\frac{j_{0}}{\beta})} \biggr] ^{\frac {1}{p}} \biggl[ \frac{\Gamma^{i_{0}}(\frac{1}{\alpha})}{\beta^{i_{0}-1}\Gamma(\frac {i_{0}}{\alpha})} \biggr] ^{\frac{1}{q}}k_{s}^{(0)}(\lambda_{1}), $$
(48)
and \(k_{s}^{(0)}(\lambda_{1})\) is indicated by (15).

Acknowledgements

This work is supported by Hunan Province Natural Science Foundation (No. 2015JJ4041), and Science Research General Foundation Item of Hunan Institution of Higher Learning College and University (No. 14C0938).
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

BY carried out the mathematical studies, participated in the sequence alignment and drafted the manuscript. YS participated in the design of the study and performed the numerical analysis. All authors read and approved the final manuscript.
Literatur
1.
Zurück zum Zitat Hardy, GH, Littlewood, JE, Pólya, G: Inequalities. Cambridge University Press, Cambridge (1934) Hardy, GH, Littlewood, JE, Pólya, G: Inequalities. Cambridge University Press, Cambridge (1934)
2.
Zurück zum Zitat Mitrinović, DS, Pečarić, JE, Fink, AM: Inequalities Involving Functions and Their Integrals and Derivatives. Kluwer Academic, Boston (1991) MATHCrossRef Mitrinović, DS, Pečarić, JE, Fink, AM: Inequalities Involving Functions and Their Integrals and Derivatives. Kluwer Academic, Boston (1991) MATHCrossRef
3.
Zurück zum Zitat Yang, BC: Hilbert-Type Integral Inequalities. Bentham Science, Sharjah (2009) Yang, BC: Hilbert-Type Integral Inequalities. Bentham Science, Sharjah (2009)
4.
Zurück zum Zitat Yang, BC: Discrete Hilbert-Type Inequalities. Bentham Science, Sharjah (2011) Yang, BC: Discrete Hilbert-Type Inequalities. Bentham Science, Sharjah (2011)
5.
Zurück zum Zitat Yang, BC: The Norm of Operator and Hilbert-Type Inequalities. Science Press, Beijing (2009) Yang, BC: The Norm of Operator and Hilbert-Type Inequalities. Science Press, Beijing (2009)
6.
Zurück zum Zitat Yang, BC: Two Types of Multiple Half-Discrete Hilbert-Type Inequalities. Lambert Academic Publishing, Saarbrücken (2012) Yang, BC: Two Types of Multiple Half-Discrete Hilbert-Type Inequalities. Lambert Academic Publishing, Saarbrücken (2012)
8.
Zurück zum Zitat Yang, BC, Brnetić, I, Krnić, M, Pečarić, JE: Generalization of Hilbert and Hardy-Hilbert integral inequalities. Math. Inequal. Appl. 8(2), 259-272 (2005) MATHMathSciNet Yang, BC, Brnetić, I, Krnić, M, Pečarić, JE: Generalization of Hilbert and Hardy-Hilbert integral inequalities. Math. Inequal. Appl. 8(2), 259-272 (2005) MATHMathSciNet
9.
Zurück zum Zitat Krnić, M, Pečarić, JE: Hilbert’s inequalities and their reverses. Publ. Math. (Debr.) 67(3-4), 315-331 (2005) MATH Krnić, M, Pečarić, JE: Hilbert’s inequalities and their reverses. Publ. Math. (Debr.) 67(3-4), 315-331 (2005) MATH
10.
Zurück zum Zitat Yang, BC, Rassias, TM: On the way of weight coefficient and research for Hilbert-type inequalities. Math. Inequal. Appl. 6(4), 625-658 (2003) MATHMathSciNet Yang, BC, Rassias, TM: On the way of weight coefficient and research for Hilbert-type inequalities. Math. Inequal. Appl. 6(4), 625-658 (2003) MATHMathSciNet
11.
Zurück zum Zitat Yang, BC, Rassias, TM: On a Hilbert-type integral inequality in the subinterval and its operator expression. Banach J. Math. Anal. 4(2), 100-110 (2010) MATHMathSciNetCrossRef Yang, BC, Rassias, TM: On a Hilbert-type integral inequality in the subinterval and its operator expression. Banach J. Math. Anal. 4(2), 100-110 (2010) MATHMathSciNetCrossRef
12.
Zurück zum Zitat Azar, L: On some extensions of Hardy-Hilbert’s inequality and applications. J. Inequal. Appl. 2009, Article ID 546829 (2009) MathSciNet Azar, L: On some extensions of Hardy-Hilbert’s inequality and applications. J. Inequal. Appl. 2009, Article ID 546829 (2009) MathSciNet
13.
Zurück zum Zitat Arpad, B, Choonghong, O: Best constant for certain multilinear integral operator. J. Inequal. Appl. 2006, Article ID 28582 (2006) Arpad, B, Choonghong, O: Best constant for certain multilinear integral operator. J. Inequal. Appl. 2006, Article ID 28582 (2006)
14.
Zurück zum Zitat Kuang, JC, Debnath, L: On Hilbert’s type inequalities on the weighted Orlicz spaces. Pac. J. Appl. Math. 1(1), 95-103 (2007) MATHMathSciNet Kuang, JC, Debnath, L: On Hilbert’s type inequalities on the weighted Orlicz spaces. Pac. J. Appl. Math. 1(1), 95-103 (2007) MATHMathSciNet
15.
Zurück zum Zitat Zhong, WY: The Hilbert-type integral inequality with a homogeneous kernel of Lambda-degree. J. Inequal. Appl. 2008, Article ID 917392 (2008) CrossRef Zhong, WY: The Hilbert-type integral inequality with a homogeneous kernel of Lambda-degree. J. Inequal. Appl. 2008, Article ID 917392 (2008) CrossRef
16.
Zurück zum Zitat Hong, Y: On Hardy-Hilbert integral inequalities with some parameters. J. Inequal. Pure Appl. Math. 6(4), 92 (2005) MathSciNet Hong, Y: On Hardy-Hilbert integral inequalities with some parameters. J. Inequal. Pure Appl. Math. 6(4), 92 (2005) MathSciNet
17.
Zurück zum Zitat Zhong, WY, Yang, BC: On multiple Hardy-Hilbert’s integral inequality with kernel. J. Inequal. Appl. 2007, Article ID 27962 (2007) MathSciNetCrossRef Zhong, WY, Yang, BC: On multiple Hardy-Hilbert’s integral inequality with kernel. J. Inequal. Appl. 2007, Article ID 27962 (2007) MathSciNetCrossRef
18.
Zurück zum Zitat Yang, BC, Krnić, M: On the norm of a multi-dimensional Hilbert-type operator. Sarajevo J. Math. 7(20), 223-243 (2011) MathSciNet Yang, BC, Krnić, M: On the norm of a multi-dimensional Hilbert-type operator. Sarajevo J. Math. 7(20), 223-243 (2011) MathSciNet
19.
Zurück zum Zitat Krnić, M, Pečarić, JE, Vuković, P: On some higher-dimensional Hilbert’s and Hardy-Hilbert’s type integral inequalities with parameters. Math. Inequal. Appl. 11, 701-716 (2008) MATHMathSciNet Krnić, M, Pečarić, JE, Vuković, P: On some higher-dimensional Hilbert’s and Hardy-Hilbert’s type integral inequalities with parameters. Math. Inequal. Appl. 11, 701-716 (2008) MATHMathSciNet
20.
22.
Zurück zum Zitat Rassias, MT, Yang, BC: On a multidimensional half-discrete Hilbert-type inequality related to the hyperbolic cotangent function. Appl. Math. Comput. 242, 800-813 (2014) MathSciNetCrossRef Rassias, MT, Yang, BC: On a multidimensional half-discrete Hilbert-type inequality related to the hyperbolic cotangent function. Appl. Math. Comput. 242, 800-813 (2014) MathSciNetCrossRef
23.
Zurück zum Zitat Chen, Q, Yang, BC: On a more accurate multidimensional Mulholland-type inequality. J. Inequal. Appl. 2014, Article ID 322 (2014) CrossRef Chen, Q, Yang, BC: On a more accurate multidimensional Mulholland-type inequality. J. Inequal. Appl. 2014, Article ID 322 (2014) CrossRef
24.
Zurück zum Zitat Rassias, MT, Yang, BC: On a multidimensional Hilbert-type integral inequality associated to the gamma function. Appl. Math. Comput. 249, 408-418 (2014) MathSciNetCrossRef Rassias, MT, Yang, BC: On a multidimensional Hilbert-type integral inequality associated to the gamma function. Appl. Math. Comput. 249, 408-418 (2014) MathSciNetCrossRef
25.
Zurück zum Zitat Yang, BC: On a more accurate multidimensional Hilbert-type inequality with parameters. Math. Inequal. Appl. 18(2), 429-441 (2015) MathSciNet Yang, BC: On a more accurate multidimensional Hilbert-type inequality with parameters. Math. Inequal. Appl. 18(2), 429-441 (2015) MathSciNet
26.
Zurück zum Zitat Yang, BC: On a more accurate reverse multidimensional half-discrete Hilbert-type inequalities. Math. Inequal. Appl. 18(2), 589-605 (2015) MathSciNet Yang, BC: On a more accurate reverse multidimensional half-discrete Hilbert-type inequalities. Math. Inequal. Appl. 18(2), 589-605 (2015) MathSciNet
27.
Zurück zum Zitat Yang, BC: Hilbert-type integral operators: norms and inequalities. In: Paralos, PM, et al. (eds.) Nonlinear Analysis: Stability, Approximation, and Inequalities, pp. 771-859. Springer, New York (2012) CrossRef Yang, BC: Hilbert-type integral operators: norms and inequalities. In: Paralos, PM, et al. (eds.) Nonlinear Analysis: Stability, Approximation, and Inequalities, pp. 771-859. Springer, New York (2012) CrossRef
28.
Zurück zum Zitat Kuang, JC: Applied Inequalities. Shangdong Science Technic Press, Jinan (2004) Kuang, JC: Applied Inequalities. Shangdong Science Technic Press, Jinan (2004)
Metadaten
Titel
On a multidimensional Hilbert-type inequality with parameters
verfasst von
Yanping Shi
Bicheng Yang
Publikationsdatum
01.12.2015
Verlag
Springer International Publishing
Erschienen in
Journal of Inequalities and Applications / Ausgabe 1/2015
Elektronische ISSN: 1029-242X
DOI
https://doi.org/10.1186/s13660-015-0898-7

Weitere Artikel der Ausgabe 1/2015

Journal of Inequalities and Applications 1/2015 Zur Ausgabe