Skip to main content
Erschienen in: Wireless Personal Communications 1/2021

19.02.2021

On Architecture of Self-Sustainable Wearable Sensor Node for IoT Healthcare Applications

verfasst von: Saeed Mohsen, Abdelhalim Zekry, Khaled Youssef, Mohamed Abouelatta

Erschienen in: Wireless Personal Communications | Ausgabe 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In healthcare applications, the remote monitoring of moving patients depends on wearable nodes that should be mobile. Thus, wearable nodes should be power mains-disconnected most of the time to enable natural wandering of patients in the area. Thus, easy-to-use models are utilized in a seamless way. From this perspective, it becomes necessary to develop a generation of wearable nodes that are energy self-sustainable with minimal dependency on fixed power sources and also more safe in light of world health organization recommendations. In this paper, a solar energy harvesting technique is proposed to provide a mains power supply for an independent continuous operation of a patient monitoring node in sunny environments. A case study is built experimentally whereas the proposed designed node is architected as a combined node that enables parallel measurements of heart rate, blood oxygen saturation (SpO2), and body temperature. The experimental results show that the wearable node can survive more than 28 h without battery recharging from the mains. While the charging time of the battery from the solar energy harvesting is approximately 2 h.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Huang, H., Zhou, J., et al. (2016). Wearable indoor localisation approach in internet of things. IET Networks, 5(5), 122–126.CrossRef Huang, H., Zhou, J., et al. (2016). Wearable indoor localisation approach in internet of things. IET Networks, 5(5), 122–126.CrossRef
2.
Zurück zum Zitat Dionisi, A., Marioli, D., Sardini, E., et al. (2016). Autonomous wearable system for vital signs measurement with energy-harvesting module. IEEE Transactions on Instrumentation and Measurement, 65(6), 1423–1434.CrossRef Dionisi, A., Marioli, D., Sardini, E., et al. (2016). Autonomous wearable system for vital signs measurement with energy-harvesting module. IEEE Transactions on Instrumentation and Measurement, 65(6), 1423–1434.CrossRef
3.
Zurück zum Zitat Xie, L., Chen, P., Chen, S., Yu, K., & Sun, H. (2019). Low-cost and highly sensitive wearable sensor based on napkin for health monitoring. Sensors, 19, 3427.CrossRef Xie, L., Chen, P., Chen, S., Yu, K., & Sun, H. (2019). Low-cost and highly sensitive wearable sensor based on napkin for health monitoring. Sensors, 19, 3427.CrossRef
4.
Zurück zum Zitat Wu, T., Wu, F., Redoute, J.-M., et al. (2017). An autonomous wireless body area network implementation towards IoT connected. IEEE Access, 5, 11413–11422.CrossRef Wu, T., Wu, F., Redoute, J.-M., et al. (2017). An autonomous wireless body area network implementation towards IoT connected. IEEE Access, 5, 11413–11422.CrossRef
5.
Zurück zum Zitat Bennett, T. R., Savaglio, C., Lu, D., Massey, H., Wang, X., Wu, J., & Jafari, R. (2014, August). Motionsynthesis toolset (most) a toolset for human motion data synthesis and validation. In Proceedings of the 4th ACM MobiHoc workshop on Pervasive wireless healthcare (pp. 25-30). Bennett, T. R., Savaglio, C., Lu, D., Massey, H., Wang, X., Wu, J., & Jafari, R. (2014, August). Motionsynthesis toolset (most) a toolset for human motion data synthesis and validation. In Proceedings of the 4th ACM MobiHoc workshop on Pervasive wireless healthcare (pp. 25-30).
6.
Zurück zum Zitat Dohr, A., et al. (2010). The internet of things for ambient assisted living. In 7th International conference on information technology: New generations. Dohr, A., et al. (2010). The internet of things for ambient assisted living. In 7th International conference on information technology: New generations.
7.
Zurück zum Zitat Joyia, G. J., et al. (2017). Internet of medical things (IOMT): applications, benefits and future challenges in healthcare domain. Journal of Communications, 12(4), 240–247. Joyia, G. J., et al. (2017). Internet of medical things (IOMT): applications, benefits and future challenges in healthcare domain. Journal of Communications, 12(4), 240–247.
8.
Zurück zum Zitat Sonoda, K., Kishida, Y., et al. (2013). Wearable photoplethysmographic sensor system with PSOC microcontroller. International Journal of Intelligent Computing in Medical Sciences, 5(1), 44–55. Sonoda, K., Kishida, Y., et al. (2013). Wearable photoplethysmographic sensor system with PSOC microcontroller. International Journal of Intelligent Computing in Medical Sciences, 5(1), 44–55.
9.
Zurück zum Zitat Seeger, C., Van Laerhoven, K., & Buchmann, A. (2015). Myhealthassistant: An event-driven middleware for multiple medical applications on a smartphone-mediated body sensor network. IEEE Journal of Biomedical and Health Informatics, 19(2), 752–760.CrossRef Seeger, C., Van Laerhoven, K., & Buchmann, A. (2015). Myhealthassistant: An event-driven middleware for multiple medical applications on a smartphone-mediated body sensor network. IEEE Journal of Biomedical and Health Informatics, 19(2), 752–760.CrossRef
10.
Zurück zum Zitat Magno, M., Salvatore, G. A., Jokic, P., et al. (2019). Self-sustainable smart ring for long-term monitoring of blood oxygenation. IEEE Access, 7, 115400–115408.CrossRef Magno, M., Salvatore, G. A., Jokic, P., et al. (2019). Self-sustainable smart ring for long-term monitoring of blood oxygenation. IEEE Access, 7, 115400–115408.CrossRef
11.
Zurück zum Zitat Decker, A. (2014). Solar energy harvesting for autonomous field devices. IET Wireless Sensor Systems, 4(1), 1–8.CrossRef Decker, A. (2014). Solar energy harvesting for autonomous field devices. IET Wireless Sensor Systems, 4(1), 1–8.CrossRef
12.
Zurück zum Zitat Mohsen, S., & Zekry, A, et al. (2019). Analog control algorithm-based a photovoltaic energy harvesting system for low-power medical applications. In IEEE 14th international conference computer engineering and systems (ICCES), Cairo, Egypt (pp. 445–449). Mohsen, S., & Zekry, A, et al. (2019). Analog control algorithm-based a photovoltaic energy harvesting system for low-power medical applications. In IEEE 14th international conference computer engineering and systems (ICCES), Cairo, Egypt (pp. 445–449).
15.
Zurück zum Zitat Wijesundara, M., Tapparello, C., Gamage, A., & Gokulan, Y., et al. (2016). Design of a kinetic energy harvester for elephant mounted wireless sensor nodes of jumboNet. In Conference IEEE. global communications (GLOBECOM) (pp. 1–7). Wijesundara, M., Tapparello, C., Gamage, A., & Gokulan, Y., et al. (2016). Design of a kinetic energy harvester for elephant mounted wireless sensor nodes of jumboNet. In Conference IEEE. global communications (GLOBECOM) (pp. 1–7).
16.
Zurück zum Zitat Barker, S., Brennan, D., Wright, N. G., et al. (2011). Piezoelectric-powered wireless sensor system with regenerative transmit mode. IET Wireless Sensor Systems, 1(1), 31–38.CrossRef Barker, S., Brennan, D., Wright, N. G., et al. (2011). Piezoelectric-powered wireless sensor system with regenerative transmit mode. IET Wireless Sensor Systems, 1(1), 31–38.CrossRef
17.
Zurück zum Zitat Borges, L. M., Chávez-Santiago, R., Barroca, N., et al. (2015). Radio-frequency energy harvesting for wearable sensors. IET Healthcare Technology Letters, 2(1), 22–27.CrossRef Borges, L. M., Chávez-Santiago, R., Barroca, N., et al. (2015). Radio-frequency energy harvesting for wearable sensors. IET Healthcare Technology Letters, 2(1), 22–27.CrossRef
18.
Zurück zum Zitat Dias, P. C., Morais, F. J. O., de Morais Franca, M. B., et al. (2015). Autonomous multisensor system powered by a solar thermoelectric energy harvester with ultra-low power management circuit. IEEE Transactions on Instrumentation and Measurement, 64, 2918–2925.CrossRef Dias, P. C., Morais, F. J. O., de Morais Franca, M. B., et al. (2015). Autonomous multisensor system powered by a solar thermoelectric energy harvester with ultra-low power management circuit. IEEE Transactions on Instrumentation and Measurement, 64, 2918–2925.CrossRef
19.
Zurück zum Zitat Ce-Ce, A., & Xiao-Xia, S. (2015). Wireless sensor network in wind and solar hybrid street lamp application. In Conference Chinese control and decision (CCDC), Qingdao, China (pp. 3335–3339). Ce-Ce, A., & Xiao-Xia, S. (2015). Wireless sensor network in wind and solar hybrid street lamp application. In Conference Chinese control and decision (CCDC), Qingdao, China (pp. 3335–3339).
20.
Zurück zum Zitat Alippi, C., Camplani, R., Galperti, C., & Roveri, M. (2011). A robust, adaptive, solar-powered WSN framework for aquatic environmental monitoring. IEEE Sensors Journal, 11(1), 45–55.CrossRef Alippi, C., Camplani, R., Galperti, C., & Roveri, M. (2011). A robust, adaptive, solar-powered WSN framework for aquatic environmental monitoring. IEEE Sensors Journal, 11(1), 45–55.CrossRef
21.
Zurück zum Zitat Cao, S., & Li, J. (2017). A survey on ambient energy sources and harvesting methods for structural health monitoring applications. Advances in Mechanical Engineering, 9(4), 1–14.CrossRef Cao, S., & Li, J. (2017). A survey on ambient energy sources and harvesting methods for structural health monitoring applications. Advances in Mechanical Engineering, 9(4), 1–14.CrossRef
22.
Zurück zum Zitat Wu, F., Rudiger, C., & Yuce, M. R. (2017). Design and feld test of an autonomous IoT WSN platform for environmental monitoring. In Conference international telecommunication networks and applications (ITNAC) (pp. 206–211). Wu, F., Rudiger, C., & Yuce, M. R. (2017). Design and feld test of an autonomous IoT WSN platform for environmental monitoring. In Conference international telecommunication networks and applications (ITNAC) (pp. 206–211).
23.
Zurück zum Zitat Naveen, K. V., & Manjunath, S. S. (2011). A reliable ultracapacitor based solar energy harvesting system for wireless sensor network enabled intelligent buildings. In Proceedings of the international conference intelligent agent and multi-agent systems (IAMA), Chennai, India (pp. 20–25). Naveen, K. V., & Manjunath, S. S. (2011). A reliable ultracapacitor based solar energy harvesting system for wireless sensor network enabled intelligent buildings. In Proceedings of the international conference intelligent agent and multi-agent systems (IAMA), Chennai, India (pp. 20–25).
24.
Zurück zum Zitat Bader, S., & Oelmann, B. (2013). Short-term energy storage for wireless sensor networks using solar energy harvesting. In IEEE 10th international conference networking, sensing and control (ICNSC) (pp. 71–76). Bader, S., & Oelmann, B. (2013). Short-term energy storage for wireless sensor networks using solar energy harvesting. In IEEE 10th international conference networking, sensing and control (ICNSC) (pp. 71–76).
27.
Zurück zum Zitat MAX30100-Pulse Oximeter and Heart-Rate Sensor IC for Wearable Health (Datasheet). https:// datasheets.maximintegrated.com/en/ds/MAX30100.pdf. Accessed 20 August 2019. MAX30100-Pulse Oximeter and Heart-Rate Sensor IC for Wearable Health (Datasheet). https:// datasheets.maximintegrated.com/en/ds/MAX30100.pdf. Accessed 20 August 2019.
Metadaten
Titel
On Architecture of Self-Sustainable Wearable Sensor Node for IoT Healthcare Applications
verfasst von
Saeed Mohsen
Abdelhalim Zekry
Khaled Youssef
Mohamed Abouelatta
Publikationsdatum
19.02.2021
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 1/2021
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-021-08229-1

Weitere Artikel der Ausgabe 1/2021

Wireless Personal Communications 1/2021 Zur Ausgabe

Neuer Inhalt