Skip to main content
Erschienen in: Designs, Codes and Cryptography 3/2018

02.09.2017

On Bonisoli’s theorem and the block codes of Steiner triple systems

verfasst von: Dieter Jungnickel, Vladimir D. Tonchev

Erschienen in: Designs, Codes and Cryptography | Ausgabe 3/2018

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A famous result of Bonisoli characterizes the equidistant linear codes over \({\mathrm{GF}}(q)\) (up to monomial equivalence) as replications of some q-ary simplex code, possibly with added 0-coordinates. We first prove a variation of this theorem which characterizes the replications of first order generalized Reed–Muller codes among the two-weight linear codes. In the second part of this paper, we use Bonisoli’s theorem and our variation to study the linear block codes of Steiner triple systems, which can only be non-trivial in the binary and ternary case. Assmus proved that the block by point incidence matrices of all Steiner triple systems on v points which have the same 2-rank generate equivalent binary codes and gave an explicit description of a generator matrix for such a code. We provide an alternative, considerably simpler, proof for these results by constructing parity check matrices for the binary codes spanned by the incidence matrix of a Steiner triple system instead, and we also obtain analogues for the ternary case. Moreover, we give simple alternative coding theoretical proofs for the lower bounds of Doyen, Hubaut and Vandensavel on the 2- and 3-ranks of Steiner triple systems.
Fußnoten
1
 This is a corrected version of the statement in [6, Cor. 3.4], where the equidistribution property is required for the codewords in E instead of the extended code. As a comparison with [6, Thm. 3.3] shows (and as confirmed by looking at examples, for instance, at the replications of first order generalized Reed–Muller codes treated in Sect. 3), this is an obvious minor error.
 
2
 The AWE just amounts to double counting the pairs \(({\mathbf {c}},h)\) with \({\mathbf {c}} \in C\) and h-coordinate \(c_h \ne 0\).
 
Literatur
1.
2.
Zurück zum Zitat Assmus Jr. E.F., Key J.D.: Designs and their codes. Cambridge University Press, Cambridge (1992).CrossRefMATH Assmus Jr. E.F., Key J.D.: Designs and their codes. Cambridge University Press, Cambridge (1992).CrossRefMATH
3.
4.
Zurück zum Zitat Beth T., Jungnickel D., Lenz H.: Design Theory, 2nd edn. Cambridge University Press, Cambridge (1999).CrossRefMATH Beth T., Jungnickel D., Lenz H.: Design Theory, 2nd edn. Cambridge University Press, Cambridge (1999).CrossRefMATH
5.
Zurück zum Zitat Bonisoli A.: Every equidistant linear code is a sequence of dual Hamming codes. Ars Comb. 18, 181–186 (1983).MathSciNetMATH Bonisoli A.: Every equidistant linear code is a sequence of dual Hamming codes. Ars Comb. 18, 181–186 (1983).MathSciNetMATH
6.
Zurück zum Zitat Borges J., Rifà J., Zinoviev V.A.: On \(q\)-ary linear completely regular codes with \(\rho = 2\) and antipodal dual. Adv. Math. Commun. 4, 567–578 (2010).MathSciNetCrossRefMATH Borges J., Rifà J., Zinoviev V.A.: On \(q\)-ary linear completely regular codes with \(\rho = 2\) and antipodal dual. Adv. Math. Commun. 4, 567–578 (2010).MathSciNetCrossRefMATH
8.
Zurück zum Zitat Coupland J.: On the construction of certain Steiner systems. Ph. D. thesis, University College of Wales (1975). Coupland J.: On the construction of certain Steiner systems. Ph. D. thesis, University College of Wales (1975).
9.
Zurück zum Zitat De Clerck F., Durante N.: Constructions and characterizations of classical sets in \(PG(n,q)\). In: Current Research Topics in Galois Geometry, pp. 1–33. Nova Science Publishers, New York (2012). De Clerck F., Durante N.: Constructions and characterizations of classical sets in \(PG(n,q)\). In: Current Research Topics in Galois Geometry, pp. 1–33. Nova Science Publishers, New York (2012).
10.
Zurück zum Zitat Delsarte P.: An algebraic approach to the association schemes of coding theory. Ph. D. thesis, Philips Research Laboratories (1973). Delsarte P.: An algebraic approach to the association schemes of coding theory. Ph. D. thesis, Philips Research Laboratories (1973).
12.
13.
Zurück zum Zitat Hall Jr. M.: Combinatorial Theory, 2nd edn. Wiley, New York (1986).MATH Hall Jr. M.: Combinatorial Theory, 2nd edn. Wiley, New York (1986).MATH
14.
Zurück zum Zitat Hamada N.: On the \(p\)-rank of the incidence matrix of a balanced or partially balanced incomplete block design and its applications to error correcting codes. Hiroshima Math. J. 3, 153–226 (1973).MathSciNetMATH Hamada N.: On the \(p\)-rank of the incidence matrix of a balanced or partially balanced incomplete block design and its applications to error correcting codes. Hiroshima Math. J. 3, 153–226 (1973).MathSciNetMATH
15.
Zurück zum Zitat Huffman W.C., Pless V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003).CrossRefMATH Huffman W.C., Pless V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003).CrossRefMATH
18.
Zurück zum Zitat Jungnickel D., van Lint J.H. (Eds.): Designs and Codes—A memorial tribute to Ed Assmus. Des. Codes Cryptogr. 17 and 18 (1999). Jungnickel D., van Lint J.H. (Eds.): Designs and Codes—A memorial tribute to Ed Assmus. Des. Codes Cryptogr. 17 and 18 (1999).
19.
Zurück zum Zitat MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes. North-Holland, New York (1977).MATH MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes. North-Holland, New York (1977).MATH
20.
Zurück zum Zitat Teirlinck L.: Combinatorial structures. Ph. D. Thesis, University of Brussels, Brussels (1976). Teirlinck L.: Combinatorial structures. Ph. D. Thesis, University of Brussels, Brussels (1976).
22.
Zurück zum Zitat Tonchev V.D.: Linear perfect codes and a characterization of the classical designs. Des. Codes Cryptogr. 17, 121–128 (1999).MathSciNetCrossRefMATH Tonchev V.D.: Linear perfect codes and a characterization of the classical designs. Des. Codes Cryptogr. 17, 121–128 (1999).MathSciNetCrossRefMATH
23.
Zurück zum Zitat Tonchev V.D.: A mass formula for Steiner triple systems STS\((2^{n}-1)\) of 2-rank \(2^n -n\). J. Comb. Theory Ser. A 95, 197–208 (2001).MathSciNetCrossRefMATH Tonchev V.D.: A mass formula for Steiner triple systems STS\((2^{n}-1)\) of 2-rank \(2^n -n\). J. Comb. Theory Ser. A 95, 197–208 (2001).MathSciNetCrossRefMATH
24.
Zurück zum Zitat Tonchev V.D., Weishaar R.S.: Steiner triple systems of order 15 and their codes. J. Stat. Plan. Inference 58, 207–216 (1997).MathSciNetCrossRefMATH Tonchev V.D., Weishaar R.S.: Steiner triple systems of order 15 and their codes. J. Stat. Plan. Inference 58, 207–216 (1997).MathSciNetCrossRefMATH
25.
Metadaten
Titel
On Bonisoli’s theorem and the block codes of Steiner triple systems
verfasst von
Dieter Jungnickel
Vladimir D. Tonchev
Publikationsdatum
02.09.2017
Verlag
Springer US
Erschienen in
Designs, Codes and Cryptography / Ausgabe 3/2018
Print ISSN: 0925-1022
Elektronische ISSN: 1573-7586
DOI
https://doi.org/10.1007/s10623-017-0406-9

Weitere Artikel der Ausgabe 3/2018

Designs, Codes and Cryptography 3/2018 Zur Ausgabe