Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.09.2018 | Ausgabe 2/2019

Distributed and Parallel Databases 2/2019

On-demand big data integration

A hybrid ETL approach for reproducible scientific research

Zeitschrift:
Distributed and Parallel Databases > Ausgabe 2/2019
Autoren:
Pradeeban Kathiravelu, Ashish Sharma, Helena Galhardas, Peter Van Roy, Luís Veiga
Wichtige Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Scientific research requires access, analysis, and sharing of data that is distributed across various heterogeneous data sources at the scale of the Internet. An eager extract, transform, and load (ETL) process constructs an integrated data repository as its first step, integrating and loading data in its entirety from the data sources. The bootstrapping of this process is not efficient for scientific research that requires access to data from very large and typically numerous distributed data sources. A lazy ETL process loads only the metadata, but still eagerly. Lazy ETL is faster in bootstrapping. However, queries on the integrated data repository of eager ETL perform faster, due to the availability of the entire data beforehand. In this paper, we propose a novel ETL approach for scientific data integration, as a hybrid of eager and lazy ETL approaches, and applied both to data as well as metadata. This way, hybrid ETL supports incremental integration and loading of metadata and data from the data sources. We incorporate a human-in-the-loop approach, to enhance the hybrid ETL, with selective data integration driven by the user queries and sharing of integrated data between users. We implement our hybrid ETL approach in a prototype platform, Óbidos, and evaluate it in the context of data sharing for medical research. Óbidos outperforms both the eager ETL and lazy ETL approaches, for scientific research data integration and sharing, through its selective loading of data and metadata, while storing the integrated data in a scalable integrated data repository.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 2/2019

Distributed and Parallel Databases 2/2019 Zur Ausgabe

Premium Partner

    Bildnachweise