Skip to main content

2021 | OriginalPaper | Buchkapitel

On Energy Preserving High-Order Discretizations for Nonlinear Acoustics

verfasst von : Herbert Egger, Vsevolod Shashkov

Erschienen in: Numerical Mathematics and Advanced Applications ENUMATH 2019

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper addresses the numerical solution of the Westervelt equation, which arises as one of the model equations in nonlinear acoustics. The problem is rewritten in a canonical form that allows the systematic discretization by Galerkin approximation in space and time. Exact energy preserving methods of formally arbitrary order are obtained and their efficient realization as well as the relation to other frequently used methods is discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat G. Akrivis, C. Makridakis, and R. N. Nochetto. Galerkin and Runge-Kutta methods: unified formulation, a posteriori error estimates and nodal superconvergence. Numer. Math., 118:429–456, 2011.MathSciNetCrossRef G. Akrivis, C. Makridakis, and R. N. Nochetto. Galerkin and Runge-Kutta methods: unified formulation, a posteriori error estimates and nodal superconvergence. Numer. Math., 118:429–456, 2011.MathSciNetCrossRef
2.
Zurück zum Zitat G. Cohen. Higher-Order Numerical Methods for Transient Wave Equations. Springer, 2002.CrossRef G. Cohen. Higher-Order Numerical Methods for Transient Wave Equations. Springer, 2002.CrossRef
3.
Zurück zum Zitat G. Cohen and P. Joly. Construction analysis of fourth-order finite difference schemes for the acoustic wave equation in nonhomogeneous media. SIAM J. Numer. Anal., 33:1266–1302, 1996.MathSciNetCrossRef G. Cohen and P. Joly. Construction analysis of fourth-order finite difference schemes for the acoustic wave equation in nonhomogeneous media. SIAM J. Numer. Anal., 33:1266–1302, 1996.MathSciNetCrossRef
4.
Zurück zum Zitat H. Egger. Energy stable Galerkin approximation of Hamiltonian and gradient systems. 2018. arXive:1812.04253. H. Egger. Energy stable Galerkin approximation of Hamiltonian and gradient systems. 2018. arXive:1812.04253.
5.
Zurück zum Zitat K. Fagnan, R. J. LeVeque, T. J. Matula, and B. MacConaghy. High-resolution finite volume methods for extracorporeal shock wave therapy. In Hyperbolic Problems: Theory, Numerics, Applications, pages 503–510. Springer, New York, 2008. K. Fagnan, R. J. LeVeque, T. J. Matula, and B. MacConaghy. High-resolution finite volume methods for extracorporeal shock wave therapy. In Hyperbolic Problems: Theory, Numerics, Applications, pages 503–510. Springer, New York, 2008.
6.
Zurück zum Zitat S. Geevers, W. A. Mulder, and J. J. W. van der Vegt. New higher-order mass-lumped tetrahedral elements for wave propagation modelling. SIAM J. Sci. Comput., 40:A2830–A2857, 2018.MathSciNetCrossRef S. Geevers, W. A. Mulder, and J. J. W. van der Vegt. New higher-order mass-lumped tetrahedral elements for wave propagation modelling. SIAM J. Sci. Comput., 40:A2830–A2857, 2018.MathSciNetCrossRef
8.
Zurück zum Zitat E. Hairer and C. Lubich. Energy-diminishing integration of gradient systems. IMA J. Numer. Anal., 34:452–461, 2014.MathSciNetCrossRef E. Hairer and C. Lubich. Energy-diminishing integration of gradient systems. IMA J. Numer. Anal., 34:452–461, 2014.MathSciNetCrossRef
9.
Zurück zum Zitat E. Hairer, C. Lubich, and G. Wanner. Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations; 2nd ed. Springer, 2006.MATH E. Hairer, C. Lubich, and G. Wanner. Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations; 2nd ed. Springer, 2006.MATH
10.
Zurück zum Zitat I. M. Hallaj and R. O. Cleveland. FDTD simulation of finite-amplitude pressure and temperature fields for biomedical ultrasound. J. Acoust. Soc. Am., 105:L7, 1999.CrossRef I. M. Hallaj and R. O. Cleveland. FDTD simulation of finite-amplitude pressure and temperature fields for biomedical ultrasound. J. Acoust. Soc. Am., 105:L7, 1999.CrossRef
11.
Zurück zum Zitat M. F. Hamilton and D. T. Blackstock. Nonlinear Acoustics. Academic Press, 1998. M. F. Hamilton and D. T. Blackstock. Nonlinear Acoustics. Academic Press, 1998.
12.
Zurück zum Zitat J. Hoffelner, H. Landes, M. Kaltenbacher, and R. Lerch. Finite element simulation of nonlinear wave propagation in thermoviscous fluids including dissipation. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 48:779–786, 2001.CrossRef J. Hoffelner, H. Landes, M. Kaltenbacher, and R. Lerch. Finite element simulation of nonlinear wave propagation in thermoviscous fluids including dissipation. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 48:779–786, 2001.CrossRef
13.
Zurück zum Zitat B. Kaltenbacher and I. Lasiecka. Global existence and exponential decay rates for the Westervelt equation. Discr. Cont. Dyn. Sys. Ser. S, 2:503–523, 2009.MathSciNetMATH B. Kaltenbacher and I. Lasiecka. Global existence and exponential decay rates for the Westervelt equation. Discr. Cont. Dyn. Sys. Ser. S, 2:503–523, 2009.MathSciNetMATH
14.
Zurück zum Zitat A. Karamalis, W. Wein, and N. Navab. Fast ultrasound image simulation using the Westervelt equation. In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2010, pages 243–250. Springer, New York, 2010. A. Karamalis, W. Wein, and N. Navab. Fast ultrasound image simulation using the Westervelt equation. In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2010, pages 243–250. Springer, New York, 2010.
15.
Zurück zum Zitat B. Leimkuhler and S. Reich. Simulating Hamiltonian Dynamics. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, 2004.MATH B. Leimkuhler and S. Reich. Simulating Hamiltonian Dynamics. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, 2004.MATH
16.
Zurück zum Zitat R. I. McLachlan, G. R. W. Quispel, and N. Robidoux. Geometric integration using discrete gradients. R. Soc. Lond. Philos. Trans. Ser. A: Math. Phys. Eng. Sci., 357:1021–1045, 1999.MathSciNetCrossRef R. I. McLachlan, G. R. W. Quispel, and N. Robidoux. Geometric integration using discrete gradients. R. Soc. Lond. Philos. Trans. Ser. A: Math. Phys. Eng. Sci., 357:1021–1045, 1999.MathSciNetCrossRef
17.
Zurück zum Zitat K. Okita, K. Ono, S. Takagi, and Y. Matsumoto. Development of high intensity focused ultrasound simulator for large-scale computing. Int. J. Numer. Meth. Fluids, 65:43–66, 2011.CrossRef K. Okita, K. Ono, S. Takagi, and Y. Matsumoto. Development of high intensity focused ultrasound simulator for large-scale computing. Int. J. Numer. Meth. Fluids, 65:43–66, 2011.CrossRef
18.
Zurück zum Zitat T. Tsuchiya and Y. Kagawa. A simulation study on nonlinear sound propagation by finite element approach. J. Acoust. Soc. Jpn., 13:223–230, 1992.CrossRef T. Tsuchiya and Y. Kagawa. A simulation study on nonlinear sound propagation by finite element approach. J. Acoust. Soc. Jpn., 13:223–230, 1992.CrossRef
19.
Zurück zum Zitat R. Velasco-Segura and P. L. Rendòn. A finite volume approach for the simulation of nonlinear dissipative acoustic wave propagation. Wave Motion, 58:180–195, 2015.MathSciNetCrossRef R. Velasco-Segura and P. L. Rendòn. A finite volume approach for the simulation of nonlinear dissipative acoustic wave propagation. Wave Motion, 58:180–195, 2015.MathSciNetCrossRef
20.
Zurück zum Zitat P. J. Westervelt. Parametric acoustic array. J. Acoust. Soc. Am., 35:535–537, 1963.CrossRef P. J. Westervelt. Parametric acoustic array. J. Acoust. Soc. Am., 35:535–537, 1963.CrossRef
Metadaten
Titel
On Energy Preserving High-Order Discretizations for Nonlinear Acoustics
verfasst von
Herbert Egger
Vsevolod Shashkov
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-55874-1_34