Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Applicable Algebra in Engineering, Communication and Computing 1/2022

06.05.2020 | Original Paper

On Euclidean self-dual codes and isometry codes

verfasst von: Lin Sok

Erschienen in: Applicable Algebra in Engineering, Communication and Computing | Ausgabe 1/2022

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

In this paper, we provide new methods and algorithms to construct Euclidean self-dual codes over large finite fields. With the existence of a dual basis, we study dual preserving linear maps, and as an application, we use them to construct self-orthogonal codes over small finite prime fields using the method of concatenation. Many new optimal self-orthogonal and self-dual codes are obtained.
Literatur
1.
Zurück zum Zitat Arasu, K.T., Gulliver, T.A.: Self-dual codes over \(\mathbb{F}_p\) and weighing matrices. IEEE Trans. Inf. Theory 47(5), 2051–2056 (2001) CrossRef Arasu, K.T., Gulliver, T.A.: Self-dual codes over \(\mathbb{F}_p\) and weighing matrices. IEEE Trans. Inf. Theory 47(5), 2051–2056 (2001) CrossRef
2.
Zurück zum Zitat Betsumiya, K., Georgiou, S., Gulliver, T.A., Harada, M., Koukouvinos, C.: On self-dual codes over some prime fields. Discrete Math. 262, 37–58 (2003) MathSciNetCrossRef Betsumiya, K., Georgiou, S., Gulliver, T.A., Harada, M., Koukouvinos, C.: On self-dual codes over some prime fields. Discrete Math. 262, 37–58 (2003) MathSciNetCrossRef
3.
Zurück zum Zitat Bosma, W., Cannon, J.J., Fieker, C., Steel, A.(eds.): Handbook of Magma Functions, Edition 2.16, 5017 p (2010) Bosma, W., Cannon, J.J., Fieker, C., Steel, A.(eds.): Handbook of Magma Functions, Edition 2.16, 5017 p (2010)
4.
Zurück zum Zitat Chen, H., Ling, S., Xing, C.P.: Asymptotically good quantum codes exceeding the Ashikhmin–Litsyn–Tsfasman bound. IEEE Trans. Inf. Theory 47(5), 2055–2058 (2001) MathSciNetCrossRef Chen, H., Ling, S., Xing, C.P.: Asymptotically good quantum codes exceeding the Ashikhmin–Litsyn–Tsfasman bound. IEEE Trans. Inf. Theory 47(5), 2055–2058 (2001) MathSciNetCrossRef
5.
Zurück zum Zitat Cramer, R., Daza, V., Gracia, I., Urroz, J.J., Leander, G., Marti-Farre, J., Padro, C.: On codes, matroids, and secure multiparty computation from linear secret-sharing schemes. IEEE Trans. Inf. Theory 54(6), 2647–2657 (2008) MathSciNetCrossRef Cramer, R., Daza, V., Gracia, I., Urroz, J.J., Leander, G., Marti-Farre, J., Padro, C.: On codes, matroids, and secure multiparty computation from linear secret-sharing schemes. IEEE Trans. Inf. Theory 54(6), 2647–2657 (2008) MathSciNetCrossRef
6.
Zurück zum Zitat Dougherty, S.T., Mesnager, S., Solé, P.: Secret-sharing schemes based on self-dual codes. In: IEEE Information Theory Workshop, pp. 338–342 (2008) Dougherty, S.T., Mesnager, S., Solé, P.: Secret-sharing schemes based on self-dual codes. In: IEEE Information Theory Workshop, pp. 338–342 (2008)
7.
Zurück zum Zitat Fang, W., Fu, F.: New constructions of MDS Euclidean self-dual codes from GRS codes and extended GRS codes. IEEE Trans. Inf. Theory 65(9), 5574–5579 (2019) MathSciNetCrossRef Fang, W., Fu, F.: New constructions of MDS Euclidean self-dual codes from GRS codes and extended GRS codes. IEEE Trans. Inf. Theory 65(9), 5574–5579 (2019) MathSciNetCrossRef
8.
10.
Zurück zum Zitat Gaborit, P., Otmani, A.: Experimental constructions of self-dual codes. Finite Fields Appl. 9(3), 372–394 (2003) MathSciNetCrossRef Gaborit, P., Otmani, A.: Experimental constructions of self-dual codes. Finite Fields Appl. 9(3), 372–394 (2003) MathSciNetCrossRef
11.
Zurück zum Zitat Georgiou, S., Koukouvinos, C.: MDS self-dual codes over large prime fields. Finite Fields Appl. 8, 455–470 (2002) MathSciNetCrossRef Georgiou, S., Koukouvinos, C.: MDS self-dual codes over large prime fields. Finite Fields Appl. 8, 455–470 (2002) MathSciNetCrossRef
13.
Zurück zum Zitat Grassl, M., Gulliver, T. A.: On self-dual MDS codes. In: ISIT 2008 Toronto, Canada, July 6 –11 (2008) Grassl, M., Gulliver, T. A.: On self-dual MDS codes. In: ISIT 2008 Toronto, Canada, July 6 –11 (2008)
15.
Zurück zum Zitat Jin, L.F., Xing, C.P.: New MDS self-dual codes from generalized Reed–Solomon codes. IEEE Trans. Inf. Theory 63(3), 1434–1438 (2017) MathSciNetCrossRef Jin, L.F., Xing, C.P.: New MDS self-dual codes from generalized Reed–Solomon codes. IEEE Trans. Inf. Theory 63(3), 1434–1438 (2017) MathSciNetCrossRef
16.
Zurück zum Zitat Kim, J.-L., Lee, Y.: Construction of MDS self-dual codes over Galois rings. Des. Codes Crypt. 45, 247–258 (2007) MathSciNetCrossRef Kim, J.-L., Lee, Y.: Construction of MDS self-dual codes over Galois rings. Des. Codes Crypt. 45, 247–258 (2007) MathSciNetCrossRef
17.
Zurück zum Zitat Kim, J.-L., Lee, Y.: Euclidean and Hermitian self-dual MDS codes over large finite fields. J. Combin. Theory Ser. A 105, 79–95 (2004) MathSciNetCrossRef Kim, J.-L., Lee, Y.: Euclidean and Hermitian self-dual MDS codes over large finite fields. J. Combin. Theory Ser. A 105, 79–95 (2004) MathSciNetCrossRef
19.
Zurück zum Zitat MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1977) MATH MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1977) MATH
20.
Zurück zum Zitat MacWilliams, F.J., Sloane, N.J.A., Thompson, J.G.: Good self-dual codes exist. Discrete Math. 3, 153–162 (1972) MathSciNetCrossRef MacWilliams, F.J., Sloane, N.J.A., Thompson, J.G.: Good self-dual codes exist. Discrete Math. 3, 153–162 (1972) MathSciNetCrossRef
21.
Zurück zum Zitat Massey, J.: Some applications of coding theory in cryptography. In: Proceedings of 4th IMA conference on cryptography and coding, pp. 33–47 (1995) Massey, J.: Some applications of coding theory in cryptography. In: Proceedings of 4th IMA conference on cryptography and coding, pp. 33–47 (1995)
23.
Zurück zum Zitat Shi, M., Sok, L., Solé, P., Çalkavur, S.: Self-dual codes and orthogonal matrices over large finite fields. Finite Fields Appl. 54, 297–314 (2018) MathSciNetCrossRef Shi, M., Sok, L., Solé, P., Çalkavur, S.: Self-dual codes and orthogonal matrices over large finite fields. Finite Fields Appl. 54, 297–314 (2018) MathSciNetCrossRef
24.
Zurück zum Zitat Taylor, D.: The Geometry of the Classical Groups Sigma Series in Pure Mathematics 9. Heldermann Verlag, Berlin (1992) Taylor, D.: The Geometry of the Classical Groups Sigma Series in Pure Mathematics 9. Heldermann Verlag, Berlin (1992)
25.
Zurück zum Zitat Tong, H., Wang, X.: New MDS Euclidean and Hermitian self-dual codes over finite fields. Adv. Pure Math. 7, 325–333 (2017) CrossRef Tong, H., Wang, X.: New MDS Euclidean and Hermitian self-dual codes over finite fields. Adv. Pure Math. 7, 325–333 (2017) CrossRef
26.
Metadaten
Titel
On Euclidean self-dual codes and isometry codes
verfasst von
Lin Sok
Publikationsdatum
06.05.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Applicable Algebra in Engineering, Communication and Computing / Ausgabe 1/2022
Print ISSN: 0938-1279
Elektronische ISSN: 1432-0622
DOI
https://doi.org/10.1007/s00200-020-00434-y

Weitere Artikel der Ausgabe 1/2022

Applicable Algebra in Engineering, Communication and Computing 1/2022 Zur Ausgabe

Acknowledgment

Acknowledgment

Premium Partner