Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.08.2016 | Ausgabe 2/2016

Designs, Codes and Cryptography 2/2016

On Jacobi sums, difference sets and partial difference sets in Galois domains

Zeitschrift:
Designs, Codes and Cryptography > Ausgabe 2/2016
Autor:
Udo Ott
Wichtige Hinweise
Communicated by Q. Xiang.

Abstract

The problems studied in this paper resemble in spirit partially the following two theorems due to Stanton and Sprott (Can J Math 10:73–77, 1958) and Whiteman (Ill J Math 6:107–121, 1962) and are based on ideas given in Storer (Cyclotomy and difference sets. Lectures in advanced mathematics, 1967).
Theorem 1 (Stanton, Sprott) Let g be a primitive root of both \(p\) and \(p -2\), where \(p\) and \(p-2\) are a pair of twin primes. Then the numbers
$$\begin{aligned} 1, g, g^2, \ldots g^{(p^2 -3)/2}\, together\, with \,0, p+2, , 2(p +2), \ldots , (p- 1)(p +2) \end{aligned}$$
form a difference set modulo \(p(p+2)\) with parameters \( v=p(p + 2), k= (v - 1)/2, \lambda =(v- 3)/4\)
Theorem 2 (Whiteman) Let \(p\) and \(q\) be two primes such hat \((p- 1, q- 1)= 4\), and let \( d = (p- 1)(q -1)/4\). Then there are exactly two subgroups \(U_1,U_2\) generated by a common primitive root of \(p\) and \(q\), and one (but not both) of he sets
$$\begin{aligned}&U_1\, together\, with \,0, q, 2q,\ldots , (p - 1)q\\&U_2\, together\, with \,0, q, 2q,\ldots , (p- 1)q \end{aligned}$$
is a difference set modulo \(p q \) with parameters \(v = pq, k= (v- 1)/4, \lambda = (v -5)/16 \) if and only if \( q = 3p +2\) and \((v- 1)/4\) is an odd square.
However, we do not follow the classical method of cyclotomic numbers to generalize these results but rather present in a modern setting the connection between difference sets or partial difference sets and Jacobi sums. With the help of Jacobi sums we are able to rephrase the existence of difference sets, partial difference sets and so called \(G\)-sets in Galois domains into a fundamental equation on Jacobi sums presented in Theorem 14. As an application we determine all cyclotomic difference and partial difference sets of small order or which are semiprimitive modulo its order by restricting the theorem to a product of two finite fields.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 2/2016

Designs, Codes and Cryptography 2/2016 Zur Ausgabe

Premium Partner

BranchenIndex Online

Die B2B-Firmensuche für Industrie und Wirtschaft: Kostenfrei in Firmenprofilen nach Lieferanten, Herstellern, Dienstleistern und Händlern recherchieren.

Whitepaper

- ANZEIGE -

Best Practices für die Mitarbeiter-Partizipation in der Produktentwicklung

Unternehmen haben das Innovationspotenzial der eigenen Mitarbeiter auch außerhalb der F&E-Abteilung erkannt. Viele Initiativen zur Partizipation scheitern in der Praxis jedoch häufig. Lesen Sie hier  - basierend auf einer qualitativ-explorativen Expertenstudie - mehr über die wesentlichen Problemfelder der mitarbeiterzentrierten Produktentwicklung und profitieren Sie von konkreten Handlungsempfehlungen aus der Praxis.
Jetzt gratis downloaden!

Bildnachweise