Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.10.2011 | ICONIP2009 | Ausgabe 7/2011

Neural Computing and Applications 7/2011

On-line learning from streaming data with delayed attributes: a comparison of classifiers and strategies

Zeitschrift:
Neural Computing and Applications > Ausgabe 7/2011
Autoren:
Mónica Millán-Giraldo, J. Salvador Sánchez, V. Javier Traver

Abstract

In many real applications, data are not all available at the same time, or it is not affordable to process them all in a batch process, but rather, instances arrive sequentially in a stream. The scenario of streaming data introduces new challenges to the machine learning community, since difficult decisions have to be made. The problem addressed in this paper is that of classifying incoming instances for which one attribute arrives only after a given delay. In this formulation, many open issues arise, such as how to classify the incomplete instance, whether to wait for the delayed attribute before performing any classification, or when and how to update a reference set. Three different strategies are proposed which address these issues differently. Orthogonally to these strategies, three classifiers of different characteristics are used. Keeping on-line learning strategies independent of the classifiers facilitates system design and contrasts with the common alternative of carefully crafting an ad hoc classifier. To assess how good learning is under these different strategies and classifiers, they are compared using learning curves and final classification errors for fifteen data sets. Results indicate that learning in this stringent context of streaming data and delayed attributes can successfully take place even with simple on-line strategies. Furthermore, active strategies behave generally better than more conservative passive ones. Regarding the classifiers, it was found that simple instance-based classifiers such as the well-known nearest neighbor may outperform more elaborate classifiers such as the support vector machines, especially if some measure of classification confidence is considered in the process.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe​​​​​​​​​​​​​​

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 7/2011

Neural Computing and Applications 7/2011 Zur Ausgabe

Premium Partner

    Bildnachweise