Skip to main content
Erschienen in: Journal of Intelligent Manufacturing 3/2020

14.02.2019

On-line part deformation prediction based on deep learning

verfasst von: Zhiwei Zhao, Yingguang Li, Changqing Liu, James Gao

Erschienen in: Journal of Intelligent Manufacturing | Ausgabe 3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Deformation prediction is the basis of deformation control in manufacturing process planning. This paper presents an on-line part deformation prediction method using a deep learning model during numerical control machining process, which is different from traditional methods based on finite element simulation of stress release prior to the actual machining process. A fourth-order tensor model is proposed to represent the continuous part geometric information, process information, and monitoring information, which is used as the input to the deep learning model. A deep learning framework with a conventional neural network and a recurrent neural network has been constructed and trained by monitored deformation data and process information associated with interim part geometric information. The proposed method can be generalised for different parts with certain similarities and has the potential to provide a reference for an adaptive machining control strategy for reducing part deformation. The proposed method was validated by actual machining experiments, and the results show that the prediction accuracy has been improved compared with existing methods. Furthermore, this paper shifts the difficult problem of residual stress measurement and off-line deformation prediction to the solution of on-line deformation prediction based on deformation monitoring data.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abellan-Nebot, J. V., & Subirón, F. R. (2010). A review of machining monitoring systems based on artificial intelligence process models. International Journal of Advanced Manufacturing Technology,47(1–4), 237–257.CrossRef Abellan-Nebot, J. V., & Subirón, F. R. (2010). A review of machining monitoring systems based on artificial intelligence process models. International Journal of Advanced Manufacturing Technology,47(1–4), 237–257.CrossRef
Zurück zum Zitat Arrazola, P. J., Özel, T., Umbrello, D., Davies, M., & Jawahir, I. S. (2013). Recent advances in modelling of metal machining processes. CIRP Annals—Manufacturing Technology,62(2), 695–718.CrossRef Arrazola, P. J., Özel, T., Umbrello, D., Davies, M., & Jawahir, I. S. (2013). Recent advances in modelling of metal machining processes. CIRP Annals—Manufacturing Technology,62(2), 695–718.CrossRef
Zurück zum Zitat Chantzis, D., Van-Der-Veen, S., Zettler, J., & Sim, W. M. (2013). An industrial workflow to minimise part distortion for machining of large monolithic components in aerospace industry. In 14th CIRP conference on modeling of machining operations (CIRP CMMO) (Vol. 8, pp. 281–286). Chantzis, D., Van-Der-Veen, S., Zettler, J., & Sim, W. M. (2013). An industrial workflow to minimise part distortion for machining of large monolithic components in aerospace industry. In 14th CIRP conference on modeling of machining operations (CIRP CMMO) (Vol. 8, pp. 281–286).
Zurück zum Zitat Cheng, Q., Zhao, H., Zhao, Y., Sun, B., & Gu, P. (2018). Machining accuracy reliability analysis of multi-axis machine tool based on Monte Carlo simulation. Journal of Intelligent Manufacturing,29(1), 191–209.CrossRef Cheng, Q., Zhao, H., Zhao, Y., Sun, B., & Gu, P. (2018). Machining accuracy reliability analysis of multi-axis machine tool based on Monte Carlo simulation. Journal of Intelligent Manufacturing,29(1), 191–209.CrossRef
Zurück zum Zitat Fu, Y., Zhang, Y., Qiao, H., Li, D., Zhou, H., & Leopold, J. (2015). Analysis of feature extracting ability for cutting state monitoring using deep belief networks. Procedia CIRP,31, 29–34.CrossRef Fu, Y., Zhang, Y., Qiao, H., Li, D., Zhou, H., & Leopold, J. (2015). Analysis of feature extracting ability for cutting state monitoring using deep belief networks. Procedia CIRP,31, 29–34.CrossRef
Zurück zum Zitat Guiassa, R., & Mayer, J. R. R. (2011). Predictive compliance based model for compensation in multi-pass milling by on-machine probing. CIRP Annals—Manufacturing Technology,60(1), 391–394.CrossRef Guiassa, R., & Mayer, J. R. R. (2011). Predictive compliance based model for compensation in multi-pass milling by on-machine probing. CIRP Annals—Manufacturing Technology,60(1), 391–394.CrossRef
Zurück zum Zitat Gulpak, M., Sölter, J., & Brinksmeier, E. (2013). Prediction of shape deviations in face milling of steel. Procedia CIRP,8, 15–20.CrossRef Gulpak, M., Sölter, J., & Brinksmeier, E. (2013). Prediction of shape deviations in face milling of steel. Procedia CIRP,8, 15–20.CrossRef
Zurück zum Zitat Guo, H., Zuo, D. W., Wu, H. B., Xu, F., & Tong, G. Q. (2009). Prediction on milling distortion for aero-multi-frame parts. Materials Science and Engineering A—Structural Materials Properties Microstructure and Processing,499(1–2), 230–233.CrossRef Guo, H., Zuo, D. W., Wu, H. B., Xu, F., & Tong, G. Q. (2009). Prediction on milling distortion for aero-multi-frame parts. Materials Science and Engineering A—Structural Materials Properties Microstructure and Processing,499(1–2), 230–233.CrossRef
Zurück zum Zitat Hao, X., Li, Y., Chen, G., & Liu, C. (2018). 6 + X locating principle based on dynamic mass centers of structural parts machined by responsive fixtures. International Journal of Machine Tools and Manufacture,125, 112–122.CrossRef Hao, X., Li, Y., Chen, G., & Liu, C. (2018). 6 + X locating principle based on dynamic mass centers of structural parts machined by responsive fixtures. International Journal of Machine Tools and Manufacture,125, 112–122.CrossRef
Zurück zum Zitat He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In 2016 IEEE conference on computer vision and pattern recognition (CVPR), Las Vegas, NV (pp. 770–778). He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In 2016 IEEE conference on computer vision and pattern recognition (CVPR), Las Vegas, NV (pp. 770–778).
Zurück zum Zitat Heinzel, C., Sölter, J., Gulpak, M., & Riemer, O. (2017). An analytical multilayer source stress approach for the modelling of material modifications in machining. CIRP Annals—Manufacturing Technology,66(1), 531–534.CrossRef Heinzel, C., Sölter, J., Gulpak, M., & Riemer, O. (2017). An analytical multilayer source stress approach for the modelling of material modifications in machining. CIRP Annals—Manufacturing Technology,66(1), 531–534.CrossRef
Zurück zum Zitat Huang, X. M., Sun, J., & Li, J. F. (2015). Finite element simulation and experimental investigation on the residual stress-related monolithic component deformation. International Journal of Advanced Manufacturing Technology,77(5–8), 1035–1041.CrossRef Huang, X. M., Sun, J., & Li, J. F. (2015). Finite element simulation and experimental investigation on the residual stress-related monolithic component deformation. International Journal of Advanced Manufacturing Technology,77(5–8), 1035–1041.CrossRef
Zurück zum Zitat Kolda, T. G., & Bader, B. W. (2009). Tensor decompositions and applications. SIAM Review,51(3), 455–500.CrossRef Kolda, T. G., & Bader, B. W. (2009). Tensor decompositions and applications. SIAM Review,51(3), 455–500.CrossRef
Zurück zum Zitat Lecun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature,521(7553), 436–444.CrossRef Lecun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature,521(7553), 436–444.CrossRef
Zurück zum Zitat Li, J. G., & Wang, S. Q. (2017). Distortion caused by residual stresses in machining aeronautical aluminum alloy parts: Recent advances. International Journal of Advanced Manufacturing Technology,89(1–4), 997–1012.CrossRef Li, J. G., & Wang, S. Q. (2017). Distortion caused by residual stresses in machining aeronautical aluminum alloy parts: Recent advances. International Journal of Advanced Manufacturing Technology,89(1–4), 997–1012.CrossRef
Zurück zum Zitat Li, Y., Liu, C., Hao, X., Gao, J. X., & Maropoulos, P. G. (2015). Responsive fixture design using dynamic product inspection and monitoring technologies for the precision machining of large-scale aerospace parts. CIRP Annals—Manufacturing Technology,64(1), 173–176.CrossRef Li, Y., Liu, C., Hao, X., Gao, J. X., & Maropoulos, P. G. (2015). Responsive fixture design using dynamic product inspection and monitoring technologies for the precision machining of large-scale aerospace parts. CIRP Annals—Manufacturing Technology,64(1), 173–176.CrossRef
Zurück zum Zitat Li, Y., Liu, X., Gao, J. X., & Maropoulos, P. G. (2012). A dynamic feature information model for integrated manufacturing planning and optimization. CIRP Annals—Manufacturing Technology,61(1), 167–170.CrossRef Li, Y., Liu, X., Gao, J. X., & Maropoulos, P. G. (2012). A dynamic feature information model for integrated manufacturing planning and optimization. CIRP Annals—Manufacturing Technology,61(1), 167–170.CrossRef
Zurück zum Zitat Moehring, H. C., Wiederkehr, P., Gonzalo, O., & Kolar, P. (2018). Intelligent fixtures for the manufacturing of low rigidity components. Berlin: Springer.CrossRef Moehring, H. C., Wiederkehr, P., Gonzalo, O., & Kolar, P. (2018). Intelligent fixtures for the manufacturing of low rigidity components. Berlin: Springer.CrossRef
Zurück zum Zitat Möhring, H. C., Litwinski, K. M., & Gümmer, O. (2010). Process monitoring with sensory machine tool components. CIRP Annals—Manufacturing Technology,59(1), 383–386.CrossRef Möhring, H. C., Litwinski, K. M., & Gümmer, O. (2010). Process monitoring with sensory machine tool components. CIRP Annals—Manufacturing Technology,59(1), 383–386.CrossRef
Zurück zum Zitat Nervi, S., Szabó, B. A., & Young, K. A. (2009). Prediction of distortion of airframe components made from aluminum plates. AIAA Journal,47(7), 1635–1641.CrossRef Nervi, S., Szabó, B. A., & Young, K. A. (2009). Prediction of distortion of airframe components made from aluminum plates. AIAA Journal,47(7), 1635–1641.CrossRef
Zurück zum Zitat Pimenov, D. Y., Bustillo, A., & Mikolajczyk, T. (2017). Artificial intelligence for automatic prediction of required surface roughness by monitoring wear on face mill teeth. Journal of Intelligent Manufacturing,29(1), 1–17. Pimenov, D. Y., Bustillo, A., & Mikolajczyk, T. (2017). Artificial intelligence for automatic prediction of required surface roughness by monitoring wear on face mill teeth. Journal of Intelligent Manufacturing,29(1), 1–17.
Zurück zum Zitat Shang, M. E. H. (1995). Prediction of the dimensional instability resulting from machining of residually stressed components. Lubbock: Texas Tech University. Shang, M. E. H. (1995). Prediction of the dimensional instability resulting from machining of residually stressed components. Lubbock: Texas Tech University.
Zurück zum Zitat Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Driessche, G. V. D., et al. (2016). Mastering the game of Go with deep neural networks and tree search. Nature,529(7587), 484.CrossRef Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Driessche, G. V. D., et al. (2016). Mastering the game of Go with deep neural networks and tree search. Nature,529(7587), 484.CrossRef
Zurück zum Zitat Tang, Z. T., Yu, T., Xu, L. Q., & Liu, Z. Q. (2013). Machining deformation prediction for frame components considering multifactor coupling effects. International Journal of Advanced Manufacturing Technology,68(1–4), 187–196.CrossRef Tang, Z. T., Yu, T., Xu, L. Q., & Liu, Z. Q. (2013). Machining deformation prediction for frame components considering multifactor coupling effects. International Journal of Advanced Manufacturing Technology,68(1–4), 187–196.CrossRef
Zurück zum Zitat Wang, J., Ma, Y., Zhang, L., Gao, R. X., & Wu, D. (2018a). Deep learning for smart manufacturing: Methods and applications. Journal of Manufacturing Systems,48(C), 144–156.CrossRef Wang, J., Ma, Y., Zhang, L., Gao, R. X., & Wu, D. (2018a). Deep learning for smart manufacturing: Methods and applications. Journal of Manufacturing Systems,48(C), 144–156.CrossRef
Zurück zum Zitat Wang, P., Gao, R. X., & Yan, R. (2017a). A deep learning-based approach to material removal rate prediction in polishing. CIRP Annals—Manufacturing Technology,66(1), 429–432.CrossRef Wang, P., Gao, R. X., & Yan, R. (2017a). A deep learning-based approach to material removal rate prediction in polishing. CIRP Annals—Manufacturing Technology,66(1), 429–432.CrossRef
Zurück zum Zitat Wang, P. S., Liu, Y., Guo, Y. X., Sun, C. Y., & Tong, X. (2017b). O-CNN: Octree-based convolutional neural networks for 3D shape analysis. ACM Transactions on Graphics,36(4), 1–11. Wang, P. S., Liu, Y., Guo, Y. X., Sun, C. Y., & Tong, X. (2017b). O-CNN: Octree-based convolutional neural networks for 3D shape analysis. ACM Transactions on Graphics,36(4), 1–11.
Zurück zum Zitat Wang, T., Qiao, M., Zhang, M., Yang, Y., & Snoussi, H. (2018b). Data-driven prognostic method based on self-supervised learning approaches for fault detection. Journal of Intelligent Manufacturing,3, 1–9. Wang, T., Qiao, M., Zhang, M., Yang, Y., & Snoussi, H. (2018b). Data-driven prognostic method based on self-supervised learning approaches for fault detection. Journal of Intelligent Manufacturing,3, 1–9.
Zurück zum Zitat Wang, X., Bi, Q., Zhu, L., & Ding, H. (2018c). Improved forecasting compensatory control to guarantee the remaining wall thickness for pocket milling of a large thin-walled part. International Journal of Advanced Manufacturing Technology,94(5–8), 1–12. Wang, X., Bi, Q., Zhu, L., & Ding, H. (2018c). Improved forecasting compensatory control to guarantee the remaining wall thickness for pocket milling of a large thin-walled part. International Journal of Advanced Manufacturing Technology,94(5–8), 1–12.
Zurück zum Zitat Wu, Q., Li, D. P., Ren, L., & Mo, S. (2016). Detecting milling deformation in 7075 aluminum alloy thin-walled plates using finite difference method. International Journal of Advanced Manufacturing Technology,85(5–8), 1291–1302.CrossRef Wu, Q., Li, D. P., Ren, L., & Mo, S. (2016). Detecting milling deformation in 7075 aluminum alloy thin-walled plates using finite difference method. International Journal of Advanced Manufacturing Technology,85(5–8), 1291–1302.CrossRef
Zurück zum Zitat Yoshioka, H., Shinno, H., Sawano, H., & Tanigawa, R. (2014). Monitoring of distance between diamond tool edge and workpiece surface in ultraprecision cutting using evanescent light. CIRP Annals—Manufacturing Technology,63(1), 341–344.CrossRef Yoshioka, H., Shinno, H., Sawano, H., & Tanigawa, R. (2014). Monitoring of distance between diamond tool edge and workpiece surface in ultraprecision cutting using evanescent light. CIRP Annals—Manufacturing Technology,63(1), 341–344.CrossRef
Zurück zum Zitat Yu, J. (2017). Adaptive hidden Markov model-based online learning framework for bearing faulty detection and performance degradation monitoring. Mechanical Systems and Signal Processing,83, 149–162.CrossRef Yu, J. (2017). Adaptive hidden Markov model-based online learning framework for bearing faulty detection and performance degradation monitoring. Mechanical Systems and Signal Processing,83, 149–162.CrossRef
Metadaten
Titel
On-line part deformation prediction based on deep learning
verfasst von
Zhiwei Zhao
Yingguang Li
Changqing Liu
James Gao
Publikationsdatum
14.02.2019
Verlag
Springer US
Erschienen in
Journal of Intelligent Manufacturing / Ausgabe 3/2020
Print ISSN: 0956-5515
Elektronische ISSN: 1572-8145
DOI
https://doi.org/10.1007/s10845-019-01465-0

Weitere Artikel der Ausgabe 3/2020

Journal of Intelligent Manufacturing 3/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.