Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 9/2017

01.09.2017

On Mechanical Properties of Graphene Sheet Estimated Using Molecular Dynamics Simulations

verfasst von: D. K. Das, M. M. Ghosh

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 9/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This work reports estimation of mechanical properties, particularly Young’s modulus of a single-layered graphene sheet by molecular dynamics (MD) simulation-based four different approaches, viz. tensile modeling, bending modeling, oscillation modeling and equilibrium MD modeling. The Young’s modulus is estimated to be of the order of some TPa. The equilibrium MD method has yielded a Young’s modulus value lower than the other non-equilibrium methods, due to the absence of any external forcing factor. Among the non-equilibrium MD methods, the bending modeling is found to predict the highest value of Young’s modulus. Comparison among different non-equilibrium methods has established the effect of strain rate on the estimated value of the Young’s modulus. The MD simulation-based approaches adopted here can be useful for the design of graphene and graphene-based materials in advanced mechanical applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S. Maity and M. Ganguly, Elements of Chemistry, 6th ed., Publishing Syndicate, Kolkata, 2003, p 52–69 S. Maity and M. Ganguly, Elements of Chemistry, 6th ed., Publishing Syndicate, Kolkata, 2003, p 52–69
2.
Zurück zum Zitat Z. Qi, D.K. Campbell, and H.S. Park, Atomistic Simulations of Tension-Induced Large Deformation and Stretchability in Graphene Kirigami, Phys. Rev. B, 2014, 90, p 245437-1–245437-7 Z. Qi, D.K. Campbell, and H.S. Park, Atomistic Simulations of Tension-Induced Large Deformation and Stretchability in Graphene Kirigami, Phys. Rev. B, 2014, 90, p 245437-1–245437-7
3.
Zurück zum Zitat C.L.P. Pavihtra, B.V. Sarada, K.V. Rajulapati, T.N. Rao, and G. Sundararajan, A new Electrochemical Approach for the Synthesis of Copper–Graphene Nanocomposite Foils with High Hardness, Sci. Rep., 2014, 4(4049), p 1–7 C.L.P. Pavihtra, B.V. Sarada, K.V. Rajulapati, T.N. Rao, and G. Sundararajan, A new Electrochemical Approach for the Synthesis of Copper–Graphene Nanocomposite Foils with High Hardness, Sci. Rep., 2014, 4(4049), p 1–7
4.
Zurück zum Zitat K. Jagannadham, Thermal Conductivity of Copper–Graphene Composite Films Synthesized by Electrochemical Deposition with Exfoliated Graphene Platelets, Metall. Mater. Trans. B, 2012, 43, p 316–324CrossRef K. Jagannadham, Thermal Conductivity of Copper–Graphene Composite Films Synthesized by Electrochemical Deposition with Exfoliated Graphene Platelets, Metall. Mater. Trans. B, 2012, 43, p 316–324CrossRef
6.
Zurück zum Zitat A. Lavoisier, Traite Elementire de Chimie (Elementary Treatise of Chemistry), A Paris, Chez Cuchet, 1789, p 1–35 (in French). A. Lavoisier, Traite Elementire de Chimie (Elementary Treatise of Chemistry), A Paris, Chez Cuchet, 1789, p 1–35 (in French).
7.
Zurück zum Zitat A.K. Geim and K.S. Novoselov, The Rise of Graphene, Nat. Mater., 2007, 6, p 183–191CrossRef A.K. Geim and K.S. Novoselov, The Rise of Graphene, Nat. Mater., 2007, 6, p 183–191CrossRef
8.
Zurück zum Zitat K.S. Novoselov, V.I. Fal’ko, L. Colombo, P.R. Gellert, M.G. Schwab, and K. Kim, A Roadmap for Graphene, Nature, 2012, 490, p 192–200CrossRef K.S. Novoselov, V.I. Fal’ko, L. Colombo, P.R. Gellert, M.G. Schwab, and K. Kim, A Roadmap for Graphene, Nature, 2012, 490, p 192–200CrossRef
9.
Zurück zum Zitat C. Lee, X. Wei, J.W. Kysar, and J. Hone, Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene, Science, 2008, 321, p 385–388CrossRef C. Lee, X. Wei, J.W. Kysar, and J. Hone, Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene, Science, 2008, 321, p 385–388CrossRef
10.
Zurück zum Zitat J.U. Lee, D. Yoon, and H. Cheong, Estimation of Young’s Modulus of Graphene by Raman Spectroscopy, Nano Lett., 2012, 12, p 4444–4448CrossRef J.U. Lee, D. Yoon, and H. Cheong, Estimation of Young’s Modulus of Graphene by Raman Spectroscopy, Nano Lett., 2012, 12, p 4444–4448CrossRef
12.
Zurück zum Zitat G. Cao, Atomistic Studies of Mechanical Properties of Graphene, Polymer, 2014, 6, p 2404–2432CrossRef G. Cao, Atomistic Studies of Mechanical Properties of Graphene, Polymer, 2014, 6, p 2404–2432CrossRef
13.
Zurück zum Zitat F. Liu, P. Ming, and J. Li, Ab Initio Calculation of Ideal Strength and Phonon Instability of Graphene in Tension, Phys. Rev. B, 2007, 76, p 064120-1–064120-7 F. Liu, P. Ming, and J. Li, Ab Initio Calculation of Ideal Strength and Phonon Instability of Graphene in Tension, Phys. Rev. B, 2007, 76, p 064120-1–064120-7
14.
Zurück zum Zitat E. Konstantinova, S.O. Dantas, and P.M.V.B. Barone, Electronic and Elastic Properties of Two-Dimensional Carbon Planes, Phys. Rev. B, 2006, 74, p 035417-1–035417-16CrossRef E. Konstantinova, S.O. Dantas, and P.M.V.B. Barone, Electronic and Elastic Properties of Two-Dimensional Carbon Planes, Phys. Rev. B, 2006, 74, p 035417-1–035417-16CrossRef
15.
Zurück zum Zitat B. Hajgato, S. Guryel, Y. Dauphin, J.M. Blairon, H.E. Miltner, G.V. Lier, F.D. Proft, and P. Geerlings, Theoretical Investigation of the Intrinsic Mechanical Properties of Single- and Double-Layer Graphene, J. Phys. Chem. C, 2012, 116, p 22608–22618CrossRef B. Hajgato, S. Guryel, Y. Dauphin, J.M. Blairon, H.E. Miltner, G.V. Lier, F.D. Proft, and P. Geerlings, Theoretical Investigation of the Intrinsic Mechanical Properties of Single- and Double-Layer Graphene, J. Phys. Chem. C, 2012, 116, p 22608–22618CrossRef
16.
Zurück zum Zitat S.S. Gupta and R.C. Batra, Elastic Properties and Frequencies of Free Vibrations of Single-Layer Graphene Sheets, J. Comput. Theor. Nanosci., 2010, 7, p 1–14CrossRef S.S. Gupta and R.C. Batra, Elastic Properties and Frequencies of Free Vibrations of Single-Layer Graphene Sheets, J. Comput. Theor. Nanosci., 2010, 7, p 1–14CrossRef
17.
Zurück zum Zitat L.V. Zhigilei, A.N. Volkov, and A.M. Dongare, Computational Study of Nanomaterials: From Large-Scale Atomistic Simulations to Mesoscopic Modelling, Encyclopedia of Nanotechnology, B. Bhushan, Ed., Springer, Heidelberg, 2012, p 470–480 L.V. Zhigilei, A.N. Volkov, and A.M. Dongare, Computational Study of Nanomaterials: From Large-Scale Atomistic Simulations to Mesoscopic Modelling, Encyclopedia of Nanotechnology, B. Bhushan, Ed., Springer, Heidelberg, 2012, p 470–480
18.
Zurück zum Zitat A. Das and M.M. Ghosh, MD Simulation-Based Study on the Melting and Thermal Expansion Behaviors of Nanoparticles Under Heat Load, Comput. Mater. Sci., 2015, 101, p 88–95CrossRef A. Das and M.M. Ghosh, MD Simulation-Based Study on the Melting and Thermal Expansion Behaviors of Nanoparticles Under Heat Load, Comput. Mater. Sci., 2015, 101, p 88–95CrossRef
19.
Zurück zum Zitat J. Tersoff, New Empirical Approach for the Structure and Energy of Covalent Systems, Phys. Rev. B, 1988, 37, p 6991–7000CrossRef J. Tersoff, New Empirical Approach for the Structure and Energy of Covalent Systems, Phys. Rev. B, 1988, 37, p 6991–7000CrossRef
20.
Zurück zum Zitat J. Li, Basic Molecular Dynamics, Handbook of Materials Modeling, S. Yip, Ed., Springer, Dordrecht, 2005, p 565–588 CrossRef J. Li, Basic Molecular Dynamics, Handbook of Materials Modeling, S. Yip, Ed., Springer, Dordrecht, 2005, p 565–588 CrossRef
21.
Zurück zum Zitat D.J. Evans and B.L. Holian, The Nose-Hoover Thermostat, J. Chem. Phys., 1985, 83, p 4069–4074CrossRef D.J. Evans and B.L. Holian, The Nose-Hoover Thermostat, J. Chem. Phys., 1985, 83, p 4069–4074CrossRef
22.
Zurück zum Zitat D. Nag, Mechanical Vibrations, Wiley India Pvt. Ltd., New Delhi, 2011, p 31–48 D. Nag, Mechanical Vibrations, Wiley India Pvt. Ltd., New Delhi, 2011, p 31–48
23.
Zurück zum Zitat J.G. Lee, Computational Materials Science: An Introduction, CRC Press (Taylor & Francis Group), Boca Raton, 2012, p 40 J.G. Lee, Computational Materials Science: An Introduction, CRC Press (Taylor & Francis Group), Boca Raton, 2012, p 40
24.
Zurück zum Zitat B. Wu, A. Heidelberg, and J.J. Boland, Mechanical Properties of Ultrahigh-strength Gold Nanowires, Nat. Mater., 2005, 4, p 525–529CrossRef B. Wu, A. Heidelberg, and J.J. Boland, Mechanical Properties of Ultrahigh-strength Gold Nanowires, Nat. Mater., 2005, 4, p 525–529CrossRef
25.
Zurück zum Zitat T. Namazu, Y. Isono, and T. Tanaka, Evaluation of Size Effect on Mechanical Properties of Single Crystal Silicon by Nanoscale Bending Test Using AFM, J. Microelectromech. Syst., 2000, 9, p 450–459CrossRef T. Namazu, Y. Isono, and T. Tanaka, Evaluation of Size Effect on Mechanical Properties of Single Crystal Silicon by Nanoscale Bending Test Using AFM, J. Microelectromech. Syst., 2000, 9, p 450–459CrossRef
26.
Zurück zum Zitat S. Sundararajan and B. Bhushan, Development of AFM-based Techniques to Measure Mechanical Properties of Nanoscale Structures, Sens. Actuators A Phys., 2002, 101, p 338–351CrossRef S. Sundararajan and B. Bhushan, Development of AFM-based Techniques to Measure Mechanical Properties of Nanoscale Structures, Sens. Actuators A Phys., 2002, 101, p 338–351CrossRef
27.
Zurück zum Zitat H. Ni and X. Li, Young’s Modulus of ZnO Nanobelts Measured Using Atomic Force Microscopy and Nanoindentation Techniques, Nanotechnology, 2006, 17, p 3591–3597CrossRef H. Ni and X. Li, Young’s Modulus of ZnO Nanobelts Measured Using Atomic Force Microscopy and Nanoindentation Techniques, Nanotechnology, 2006, 17, p 3591–3597CrossRef
Metadaten
Titel
On Mechanical Properties of Graphene Sheet Estimated Using Molecular Dynamics Simulations
verfasst von
D. K. Das
M. M. Ghosh
Publikationsdatum
01.09.2017
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 9/2017
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-017-2909-y

Weitere Artikel der Ausgabe 9/2017

Journal of Materials Engineering and Performance 9/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.