Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Production Engineering 1/2020

25.11.2019 | Production Process

On mesh dependencies in finite-element-based damage prediction: application to sheet metal bending

verfasst von: Leon Sprave, Alexander Schowtjak, Rickmer Meya, Till Clausmeyer, A. Erman Tekkaya, Andreas Menzel

Erschienen in: Production Engineering | Ausgabe 1/2020

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

The properties of a local and a regularised gradient-enhanced continuum damage model are highlighted and both types of models are applied to the simulation of an air bending process. Constitutive relations are summarised for both Lemaitre-type models and a brief description of their implementation into Abaqus user material subroutines is given. With (several) material parameters obtained from a basic parameter identification process, an air bending experiment is simulated with different mesh densities. By means of the damage evolution as well as the distribution of representative damage and hardening variables, the mesh dependence of the local model in contrast to the mesh independence of the gradient-enhanced model is analysed for two air bending processes with different die width.
Literatur
1.
Zurück zum Zitat Akeret R (1978) Versagensmechanismen beim Biegen von Aluminiumblechen und Grenzen der Biegefähigkeit. Aluminium 54:117–123 Akeret R (1978) Versagensmechanismen beim Biegen von Aluminiumblechen und Grenzen der Biegefähigkeit. Aluminium 54:117–123
2.
Zurück zum Zitat Bažant ZP, Belytschko TB, Chang T-P (1984) Continuum theory for strain-softening. J Eng Mech 110(12):1666–1692 CrossRef Bažant ZP, Belytschko TB, Chang T-P (1984) Continuum theory for strain-softening. J Eng Mech 110(12):1666–1692 CrossRef
3.
Zurück zum Zitat Bažant ZP, Pijaudier-Cabot G (1988) Nonlocal continuum damage, localization instability and convergence. J Appl Mech 55(2):287–293 CrossRef Bažant ZP, Pijaudier-Cabot G (1988) Nonlocal continuum damage, localization instability and convergence. J Appl Mech 55(2):287–293 CrossRef
4.
Zurück zum Zitat Cao TS (2017) Models for ductile damage and fracture prediction in cold bulk metal forming processes: a review. Int J Mater Form 10(2):139–171 CrossRef Cao TS (2017) Models for ductile damage and fracture prediction in cold bulk metal forming processes: a review. Int J Mater Form 10(2):139–171 CrossRef
5.
Zurück zum Zitat Clausmeyer T, Güner A, Tekkaya AE, Levkovitch V, Svendsen B (2015) Modeling and finite element simulation of loading-path-dependent hardening in sheet metals during forming. Int J Plast 63:64–93 CrossRef Clausmeyer T, Güner A, Tekkaya AE, Levkovitch V, Svendsen B (2015) Modeling and finite element simulation of loading-path-dependent hardening in sheet metals during forming. Int J Plast 63:64–93 CrossRef
6.
Zurück zum Zitat De Borst R, Sluys LJ, Mühlhaus H-B, Pamin J (1993) Fundamental issues in finite element analyses of localization of deformation. Eng Comput 10(2):99–121 CrossRef De Borst R, Sluys LJ, Mühlhaus H-B, Pamin J (1993) Fundamental issues in finite element analyses of localization of deformation. Eng Comput 10(2):99–121 CrossRef
7.
Zurück zum Zitat Dimitrijevic BJ, Hackl K (2008) A method for gradient enhancement of continuum damage models. Technische Mechanik 28(1):43–52 Dimitrijevic BJ, Hackl K (2008) A method for gradient enhancement of continuum damage models. Technische Mechanik 28(1):43–52
9.
Zurück zum Zitat Forest S (2009) Micromorphic approach for gradient elasticity, viscoplasticity, and damage. J Eng Mech 135(3):117–131 CrossRef Forest S (2009) Micromorphic approach for gradient elasticity, viscoplasticity, and damage. J Eng Mech 135(3):117–131 CrossRef
10.
Zurück zum Zitat Gurson AL (1977) Continuum theory of ductile rupture by void nucleation and growth: part I—yield criteria and flow rules for porous ductile media. J Eng Mater Technol 99(1):2–15 CrossRef Gurson AL (1977) Continuum theory of ductile rupture by void nucleation and growth: part I—yield criteria and flow rules for porous ductile media. J Eng Mater Technol 99(1):2–15 CrossRef
11.
Zurück zum Zitat Heibel S, Dettinger T, Nester W, Clausmeyer T, Tekkaya AE (2018) Damage mechanisms and mechanical properties of high-strength multiphase steels. Materials 11(5):761 CrossRef Heibel S, Dettinger T, Nester W, Clausmeyer T, Tekkaya AE (2018) Damage mechanisms and mechanical properties of high-strength multiphase steels. Materials 11(5):761 CrossRef
12.
Zurück zum Zitat Kaupper M, Merklein M (2013) Bendability of advanced high strength steels—a new evaluation procedure. CIRP Ann 62(1):247–250 CrossRef Kaupper M, Merklein M (2013) Bendability of advanced high strength steels—a new evaluation procedure. CIRP Ann 62(1):247–250 CrossRef
13.
Zurück zum Zitat Kiefer B, Waffenschmidt T, Sprave L, Menzel A (2018) A gradient-enhanced damage model coupled to plasticity—multi-surface formulation and algorithmic concepts. Int J Damage Mech 27(2):253–295 CrossRef Kiefer B, Waffenschmidt T, Sprave L, Menzel A (2018) A gradient-enhanced damage model coupled to plasticity—multi-surface formulation and algorithmic concepts. Int J Damage Mech 27(2):253–295 CrossRef
14.
Zurück zum Zitat Krajcinovic D (1996) Continuum models. In: Krajcinovic D (ed) Damage mechanics, vol 41. North-Holland series in applied mathematics and mechanics. North-Holland, Amsterdam, pp 415–602 (chapter 4) CrossRef Krajcinovic D (1996) Continuum models. In: Krajcinovic D (ed) Damage mechanics, vol 41. North-Holland series in applied mathematics and mechanics. North-Holland, Amsterdam, pp 415–602 (chapter 4) CrossRef
15.
Zurück zum Zitat Larsson R, Razanica S, Josefson BL (2016) Mesh objective continuum damage models for ductile fracture. Int J Numer Methods Eng 106(10):840–860 MathSciNetCrossRef Larsson R, Razanica S, Josefson BL (2016) Mesh objective continuum damage models for ductile fracture. Int J Numer Methods Eng 106(10):840–860 MathSciNetCrossRef
16.
Zurück zum Zitat Lemaitre J (1985) A continuous damage mechanics model for ductile fracture. J Eng Mater Technol 107:83–89 CrossRef Lemaitre J (1985) A continuous damage mechanics model for ductile fracture. J Eng Mater Technol 107:83–89 CrossRef
17.
18.
Zurück zum Zitat Meya R, Löbbe C, Tekkaya AE (2019) Stress state analysis of radial stress superposed bending. Int J Precis Eng Manuf 20(1):53–66 CrossRef Meya R, Löbbe C, Tekkaya AE (2019) Stress state analysis of radial stress superposed bending. Int J Precis Eng Manuf 20(1):53–66 CrossRef
19.
Zurück zum Zitat Ostwald R, Kuhl E, Menzel A (2019) On the implementation of finite deformation gradient-enhanced damage models. Comput Mech 64(Issue 3):847–877 MathSciNetCrossRef Ostwald R, Kuhl E, Menzel A (2019) On the implementation of finite deformation gradient-enhanced damage models. Comput Mech 64(Issue 3):847–877 MathSciNetCrossRef
20.
Zurück zum Zitat Peerlings R H J, de Borst R, Brekelmans W A M, de Vree J H P, Spee I (1996) Some observations on localisation in non-local and gradient damage models. Eur J Mech A Solids 15:937–953 MATH Peerlings R H J, de Borst R, Brekelmans W A M, de Vree J H P, Spee I (1996) Some observations on localisation in non-local and gradient damage models. Eur J Mech A Solids 15:937–953 MATH
21.
Zurück zum Zitat Polindara C, Waffenschmidt T, Menzel A (2017) A computational framework for modelling damage-induced softening in fibre-reinforced materials—application to balloon angioplasty. Int J Solids Struct 118–119:235–256 CrossRef Polindara C, Waffenschmidt T, Menzel A (2017) A computational framework for modelling damage-induced softening in fibre-reinforced materials—application to balloon angioplasty. Int J Solids Struct 118–119:235–256 CrossRef
22.
Zurück zum Zitat Rousselier G (1987) Ductile fracture models and their potential in local approach of fracture. Nucl Eng Des 105(1):97–111 CrossRef Rousselier G (1987) Ductile fracture models and their potential in local approach of fracture. Nucl Eng Des 105(1):97–111 CrossRef
23.
Zurück zum Zitat Sarkar J, Kutty TRG, Conlon KT, Wilkinson DS, Embury JD, Lloyd DJ (2001) Tensile and bending properties of AA5754 aluminum alloys. Mater Sci Eng A 316(1–2):52–59 CrossRef Sarkar J, Kutty TRG, Conlon KT, Wilkinson DS, Embury JD, Lloyd DJ (2001) Tensile and bending properties of AA5754 aluminum alloys. Mater Sci Eng A 316(1–2):52–59 CrossRef
24.
Zurück zum Zitat Soyarslan C, Malekipour Gharbi M, Tekkaya A E (2012) A combined experimental–numerical investigation of ductile fracture in bending of a class of ferritic-martensitic steel. Int J Solids Struct 49(13):1608–1626 CrossRef Soyarslan C, Malekipour Gharbi M, Tekkaya A E (2012) A combined experimental–numerical investigation of ductile fracture in bending of a class of ferritic-martensitic steel. Int J Solids Struct 49(13):1608–1626 CrossRef
25.
Zurück zum Zitat Soyarslan C, Tekkaya AE, Akyuz U (2008) Application of continuum damage mechanics in discontinuous crack formation: forward extrusion chevron predictions. ZAMM Zeitschrift für Angewandte Mathematik und Mechanik 88(6):436–453 MathSciNetCrossRef Soyarslan C, Tekkaya AE, Akyuz U (2008) Application of continuum damage mechanics in discontinuous crack formation: forward extrusion chevron predictions. ZAMM Zeitschrift für Angewandte Mathematik und Mechanik 88(6):436–453 MathSciNetCrossRef
26.
Zurück zum Zitat Sprave L, Menzel A (2018) Gradient-enhanced ductile damage—a finite deformation framework with application to DP800. PAMM 18(1):e201800232 CrossRef Sprave L, Menzel A (2018) Gradient-enhanced ductile damage—a finite deformation framework with application to DP800. PAMM 18(1):e201800232 CrossRef
27.
Zurück zum Zitat Triantafyllidis N, Aifantis E C (1986) A gradient approach to localization of deformation. I. hyperelastic materials. J Elast 16(3):225–237 MathSciNetCrossRef Triantafyllidis N, Aifantis E C (1986) A gradient approach to localization of deformation. I. hyperelastic materials. J Elast 16(3):225–237 MathSciNetCrossRef
28.
Zurück zum Zitat Tvergaard V, Needleman A (1984) Analysis of the cup-cone fracture in a round tensile bar. Acta Metall 32(1):157–169 CrossRef Tvergaard V, Needleman A (1984) Analysis of the cup-cone fracture in a round tensile bar. Acta Metall 32(1):157–169 CrossRef
30.
Zurück zum Zitat Wcislo B, Pamin J, Kowalczyk-Gajewska K (2013) Gradient-enhanced damage model for large deformations of elastic–plastic materials. Arch Mech 65(5):407–428 MathSciNet Wcislo B, Pamin J, Kowalczyk-Gajewska K (2013) Gradient-enhanced damage model for large deformations of elastic–plastic materials. Arch Mech 65(5):407–428 MathSciNet
Metadaten
Titel
On mesh dependencies in finite-element-based damage prediction: application to sheet metal bending
verfasst von
Leon Sprave
Alexander Schowtjak
Rickmer Meya
Till Clausmeyer
A. Erman Tekkaya
Andreas Menzel
Publikationsdatum
25.11.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Production Engineering / Ausgabe 1/2020
Print ISSN: 0944-6524
Elektronische ISSN: 1863-7353
DOI
https://doi.org/10.1007/s11740-019-00937-9

Weitere Artikel der Ausgabe 1/2020

Production Engineering 1/2020 Zur Ausgabe

Premium Partner

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.