Skip to main content
Erschienen in:

27.01.2024

On Modeling Bivariate Lifetime Data in the Presence of Inliers

verfasst von: Sumangal Bhattacharya, Ishapathik Das, Muralidharan Kunnummal

Erschienen in: Annals of Data Science | Ausgabe 1/2025

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Many items fail instantaneously or early in life-testing experiments, mainly in electronic parts and clinical trials, due to faulty construction, inferior quality, or non-response to treatments. We record the observed lifetime as zero or near zero, defined as instantaneous or early failure observations. In general, some observations may be concentrated around a point, and others follow some continuous distribution. In data, these kinds of observations are regarded as inliers. Some unimodal parametric distributions, such as Weibull, gamma, log-normal, and Pareto, are usually used to fit the data for analyzing and predicting future events concerning lifetime observations. The usual modelling approach based on uni-modal parametric distributions may not provide the expected results for data with inliers because of the multi-modal nature of the data. The correlated bivariate observations with inliers also frequently occur in life-testing experiments. Here, we propose a method of modelling bivariate lifetime data with instantaneous and early failure observations. A new bivariate distribution is constructed by combining the bivariate uniform and bivariate Weibull distributions. The bivariate Weibull distribution has been obtained by using a 2-dimensional copula, assuming that the marginal distribution is a two-parametric Weibull distribution. An attempt has also been made to derive some properties (viz. joint probability density function, survival (reliability) function, and hazard (failure rate) function) of the modified bivariate Weibull distribution so obtained. The model’s unknown parameters have been estimated using a combination of the Maximum Likelihood Estimation technique and machine learning clustering algorithm, viz. Density-Based Spatial Clustering of Applications with Noise (DBSCAN). Numerical examples are provided using simulated data to illustrate and test the performance of the proposed methodologies. Relevant codes and necessary computations have been developed using R and Python languages. The proposed method has been applied to real data with possible inflation. It has been observed that the data contain inliers with a probability of 0.57. The study also does a comparison test with the proposed method and the existing method in the literature, wherein it was found that the proposed method provides a significantly better fit than the base model (in literature) with a P value less than 0.0001.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Prabhakar Murthy DN, Xie M, Jiang R (2004) Weibull Models. Wiley Series in Probability and Statistics. Wiley, Hoboken Prabhakar Murthy DN, Xie M, Jiang R (2004) Weibull Models. Wiley Series in Probability and Statistics. Wiley, Hoboken
5.
Zurück zum Zitat Muralidharan K, Parikh R, Lai C (2011) A Bayesian analysis on Weibull model allowing nearly instantaneous failures. Reliablity: Theory Appl 6(4(23)):140–148 Muralidharan K, Parikh R, Lai C (2011) A Bayesian analysis on Weibull model allowing nearly instantaneous failures. Reliablity: Theory Appl 6(4(23)):140–148
6.
Zurück zum Zitat Muralidharan K, Khabia A (2011) A modified pareto distribution. J Indian Stat Assoc 49:73–90 Muralidharan K, Khabia A (2011) A modified pareto distribution. J Indian Stat Assoc 49:73–90
7.
Zurück zum Zitat Muralidharan K, Pratima B (2016) A revisit to early failure analysis in life testing. J Indian Stat Assoc 54(1–2):43–69 Muralidharan K, Pratima B (2016) A revisit to early failure analysis in life testing. J Indian Stat Assoc 54(1–2):43–69
13.
Zurück zum Zitat Muralidharan K, Bavagosai P (2021) Some inferences on tests for inliers. Int J Stat Reliab Eng 8(2):243–263 Muralidharan K, Bavagosai P (2021) Some inferences on tests for inliers. Int J Stat Reliab Eng 8(2):243–263
14.
Zurück zum Zitat Muralidharan K (2023) A comparison of can and umvu estimators in inliers-prone distributions. FOUNDED 1998:43 Muralidharan K (2023) A comparison of can and umvu estimators in inliers-prone distributions. FOUNDED 1998:43
16.
Zurück zum Zitat Olson DL, Shi Y, Shi Y (2007) Introduction to business data mining, vol 10. McGraw-Hill, New York Olson DL, Shi Y, Shi Y (2007) Introduction to business data mining, vol 10. McGraw-Hill, New York
24.
Zurück zum Zitat Fayomi A, Almetwally EM, Qura ME (2023) Exploring new horizons: advancing data analysis in kidney patient infection rates and uefa champions league scores using bivariate Kavya-Manoharan transformation family of distributions. Mathematics 11(13):2986. https://doi.org/10.3390/math11132986CrossRef Fayomi A, Almetwally EM, Qura ME (2023) Exploring new horizons: advancing data analysis in kidney patient infection rates and uefa champions league scores using bivariate Kavya-Manoharan transformation family of distributions. Mathematics 11(13):2986. https://​doi.​org/​10.​3390/​math11132986CrossRef
29.
Zurück zum Zitat Sklar M (1959) Fonctions de repartition an dimensions et leurs marges. Publ Inst Stat Univ Paris 8:229–231 Sklar M (1959) Fonctions de repartition an dimensions et leurs marges. Publ Inst Stat Univ Paris 8:229–231
33.
Zurück zum Zitat Rahmah N, Sitanggang IS (2016) Determination of optimal epsilon (eps) value on DBSCAN algorithm to clustering data on peatland hotspots in Sumatra. In: Nurhadi B (ed) IOP Conference Series: Earth and Environmental Science, vol 31, p 012012. IOP Publishing, United Kingdom. https://doi.org/10.1088/1755-1315/31/1/012012 Rahmah N, Sitanggang IS (2016) Determination of optimal epsilon (eps) value on DBSCAN algorithm to clustering data on peatland hotspots in Sumatra. In: Nurhadi B (ed) IOP Conference Series: Earth and Environmental Science, vol 31, p 012012. IOP Publishing, United Kingdom. https://​doi.​org/​10.​1088/​1755-1315/​31/​1/​012012
Metadaten
Titel
On Modeling Bivariate Lifetime Data in the Presence of Inliers
verfasst von
Sumangal Bhattacharya
Ishapathik Das
Muralidharan Kunnummal
Publikationsdatum
27.01.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
Annals of Data Science / Ausgabe 1/2025
Print ISSN: 2198-5804
Elektronische ISSN: 2198-5812
DOI
https://doi.org/10.1007/s40745-023-00511-2