Zum Inhalt

On multi-objective multi-coverage covering salesman problem

  • 31.10.2025
  • Optimization

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In most of the covering salesman problems (CSPs) addressed in the literature, the customer nodes are considered to attain 1-coverage. However, such consideration makes the system vulnerable. One way to make the system robust is to consider more than 1-coverage for all nodes/customers. However, the same coverage value of more than one for all nodes/customers is not realistic as well as cost effective. In this study, we divide the nodes in different groups based on their requirements of coverage. The coverage is more for a node of higher importance (or priority) compared to others. The nodes of the same group have the same coverage requirement. Some real-world scenarios where such a system is mostly suitable includes border surveillance, supply chain in disaster management, and missile defense systems. The aim of this study is to formulate and solve a multi-objective CSP for multiple values of coverage considering the two conflicting objectives, maximization of overall coverage and minimization of tour length. We name the problem as multi-objective multi-coverage CSP (MOMC-CSP). To solve the proposed MOMC-CSP, we modify the general framework of the non-dominated sorting genetic algorithm (NSGA-II) (Deb et al. 2002) to adapt it suitable for the problem. For implementation purpose, we use a one-dimensional array of variable length to represent a chromosome that needs less memory as well as less computation time compared to a fixed length chromosome. Accordingly, we design the genetic operators compatible to the problem and the chromosome representation. To show the effectiveness of the proposed model, exhaustive experiments are performed on a number of numerical examples of different sizes from the TSP library varying the number of nodes from100 to 666. Finally, some future research directions are provided.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Titel
On multi-objective multi-coverage covering salesman problem
Verfasst von
Amiya Biswas
Erfan Babaee Tirkolaee
Lakshmi Narayan De
Vincent F. Yu
Tandra Pal
Publikationsdatum
31.10.2025
Verlag
Springer Berlin Heidelberg
Erschienen in
Soft Computing
Print ISSN: 1432-7643
Elektronische ISSN: 1433-7479
DOI
https://doi.org/10.1007/s00500-025-10925-0
Dieser Inhalt ist nur sichtbar, wenn du eingeloggt bist und die entsprechende Berechtigung hast.
    Bildnachweise
    AvePoint Deutschland GmbH/© AvePoint Deutschland GmbH, NTT Data/© NTT Data, Wildix/© Wildix, arvato Systems GmbH/© arvato Systems GmbH, Ninox Software GmbH/© Ninox Software GmbH, Nagarro GmbH/© Nagarro GmbH, GWS mbH/© GWS mbH, CELONIS Labs GmbH, USU GmbH/© USU GmbH, G Data CyberDefense/© G Data CyberDefense, FAST LTA/© FAST LTA, Vendosoft/© Vendosoft, Kumavision/© Kumavision, Noriis Network AG/© Noriis Network AG, WSW Software GmbH/© WSW Software GmbH, tts GmbH/© tts GmbH, Asseco Solutions AG/© Asseco Solutions AG, AFB Gemeinnützige GmbH/© AFB Gemeinnützige GmbH