Skip to main content

2025 | OriginalPaper | Buchkapitel

On Opportunities and Challenges of Large Language Models and GPT for Problem Solving and TRIZ Education

verfasst von : Simone Avogadri, Davide Russo

Erschienen in: World Conference of AI-Powered Innovation and Inventive Design

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The advent of GPT has caused a real revolution in many application contexts. Even the TRIZ community has had to face up to this new technology, questioning the possible integrations with traditional paths and tools. Many problem-solving experts have for some time been proposing specific prompts based on the methodology’s tools such as functional analysis, reconstruction of cause-effect relationships, identification of Resources, 40 inventive principles, etc., in order to support the problem solver, or even replace him altogether, during the inventive process. The free generation of LLM content has been applied for very different purposes such as, for example, to contextualize general purpose heuristics in specific domains, or as a search engine to answer technical questions, to suggest creative ideas or improve the formulation and redefinition of a problem, or finally to find connections between different application contexts.
This article proposes a critical analysis of the real effectiveness of these prompts according to the different needs of users.
The analysis was carried out using a software application that was developed in-house and for which a testing phase was conducted on a variegated sample covering both the academic and industrial fields, with more experienced users and users who have been approaching TRIZ for less time.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Douard, N., Samet, A., Giakos, G., Cavallucci, D.: Navigating the knowledge network: how inter-domain information pairing and generative AI can enable rapid problem-solving. In: Cavallucci, D., Livotov, P., Brad, S. (eds.) Towards AI-Aided Invention and Innovation. TFC 2023. IFIP AICT, vol. 682, pp. 139–146. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-42532-5_11 Douard, N., Samet, A., Giakos, G., Cavallucci, D.: Navigating the knowledge network: how inter-domain information pairing and generative AI can enable rapid problem-solving. In: Cavallucci, D., Livotov, P., Brad, S. (eds.) Towards AI-Aided Invention and Innovation. TFC 2023. IFIP AICT, vol. 682, pp. 139–146. Springer, Cham (2023). https://​doi.​org/​10.​1007/​978-3-031-42532-5_​11
3.
Zurück zum Zitat Ni, X., Samet, A., Cavallucci, D.: Build links between problems and solutions in the patent. In: Cavallucci, D., Brad, S., Livotov, P. (eds.) Systematic Complex Problem Solving in the Age of Digitalization and Open Innovation. TFC 2020. IFIP AICT, vol. 597, pp. 64–76. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61295-5_6 Ni, X., Samet, A., Cavallucci, D.: Build links between problems and solutions in the patent. In: Cavallucci, D., Brad, S., Livotov, P. (eds.) Systematic Complex Problem Solving in the Age of Digitalization and Open Innovation. TFC 2020. IFIP AICT, vol. 597, pp. 64–76. Springer, Cham (2020). https://​doi.​org/​10.​1007/​978-3-030-61295-5_​6
4.
Zurück zum Zitat Berdyugina, D., Cavallucci, D.: Exploitation of causal relation for automatic extraction of contradiction from a domain-restricted patent corpus. In: Nowak, R., Chrząszcz, J., Brad, S. (eds.) Systematic Innovation Partnerships with Artificial Intelligence and Information Technology. TFC 2022. IFIP AICT, vol. 655, pp. 86–95. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17288-5_8 Berdyugina, D., Cavallucci, D.: Exploitation of causal relation for automatic extraction of contradiction from a domain-restricted patent corpus. In: Nowak, R., Chrząszcz, J., Brad, S. (eds.) Systematic Innovation Partnerships with Artificial Intelligence and Information Technology. TFC 2022. IFIP AICT, vol. 655, pp. 86–95. Springer, Cham (2022). https://​doi.​org/​10.​1007/​978-3-031-17288-5_​8
6.
Zurück zum Zitat Livotov, P.: Nature’s lessons, AI’s power: sustainable process design with generative AI. Proc. Des. Soc. 4, 2129–2138 (2024)CrossRef Livotov, P.: Nature’s lessons, AI’s power: sustainable process design with generative AI. Proc. Des. Soc. 4, 2129–2138 (2024)CrossRef
7.
8.
Zurück zum Zitat Wang, B., et al.: A task-decomposed AI-aided approach for generative conceptual Design. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (Vol. 87349, p. V006T06A009). American Society of Mechanical Engineers, August 2023 Wang, B., et al.: A task-decomposed AI-aided approach for generative conceptual Design. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (Vol. 87349, p. V006T06A009). American Society of Mechanical Engineers, August 2023
9.
Zurück zum Zitat Kahneman, D.: Thinking, Fast and Slow. Macmillan, New York (2011) Kahneman, D.: Thinking, Fast and Slow. Macmillan, New York (2011)
10.
Zurück zum Zitat Nori, H., King, N., McKinney, S.M., Carignan, D., Horvitz, E.: Capabilities of gpt-4 on medical challenge problems (2023). arXiv preprint arXiv:2303.13375 Nori, H., King, N., McKinney, S.M., Carignan, D., Horvitz, E.: Capabilities of gpt-4 on medical challenge problems (2023). arXiv preprint arXiv:​2303.​13375
11.
Zurück zum Zitat Guarino, G., Samet, A., Cavallucci, D.: PaTRIZ: a framework for mining TRIZ contradictions in patents. Expert Syst. Appl. 207, 117942 (2022)CrossRef Guarino, G., Samet, A., Cavallucci, D.: PaTRIZ: a framework for mining TRIZ contradictions in patents. Expert Syst. Appl. 207, 117942 (2022)CrossRef
Metadaten
Titel
On Opportunities and Challenges of Large Language Models and GPT for Problem Solving and TRIZ Education
verfasst von
Simone Avogadri
Davide Russo
Copyright-Jahr
2025
DOI
https://doi.org/10.1007/978-3-031-75919-2_12