Skip to main content
Erschienen in:

2022 | OriginalPaper | Buchkapitel

On Semisimplification of Tensor Categories

verfasst von : Pavel Etingof, Victor Ostrik

Erschienen in: Representation Theory and Algebraic Geometry

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We develop the theory of semisimplifications of tensor categories defined by Barrett and Westbury. In particular, we compute the semisimplification of the category of representations of a finite group in characteristic p in terms of representations of the normalizer of its Sylow p-subgroup. This allows us to compute the semisimplification of the representation category of the symmetric group Sn+p in characteristic p, where 0 ≤ n ≤ p − 1, and of the Deligne category \( \underline { \mathop {\mathrm {Rep}} \nolimits }^{\mathrm {ab}}S_t\), where t ∈ℕ. We also compute the semisimplification of the category of representations of the Kac-De Concini quantum group of the Borel subalgebra of \(\mathfrak {sl}_2\). We also study tensor functors between Verlinde categories of semisimple algebraic groups arising from the semisimplification construction and objects of finite type in categories of modular representations of finite groups (i.e., objects generating a fusion category in the semisimplification). Finally, we determine the semisimplifications of the tilting categories of GL(n), SL(n), and PGL(n) in characteristic 2. In the appendix, we classify categorifications of the Grothendieck ring of representations of SO(3) and its truncations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
We refer the reader to [BEEO] where the results of Sect. 8 are generalized to arbitrary characteristic.
 
2
Note that this condition is not necessarily satisfied: e.g., if char(k) = p, t ∈k, and \( \underline { \mathop {\mathrm {Rep}} \nolimits }_{\mathbf {k}}(S_t)\) is the Karoubian Deligne category of representations of St [EGNO, Subsection 9.12], then this property holds only if t ∈𝔽p ⊂k; namely, if σ is the cyclic permutation on Xp, where X is the tautological object, then (1 − σ)p = 0 but Tr(1 − σ) = tp − t.
 
3
Note that any Karoubian linear category with finite dimensional morphism spaces satisfies the Krull-Schmidt theorem, which says that any object has a unique decomposition into a direct sum of indecomposables (up to a non-unique isomorphism); for this reason, such categories are sometimes called Krull-Schmidt categories.
 
Literatur
[A]
Zurück zum Zitat J. L. Alperin, Local representation theory, Modular Representations as an Introduction to the Local Representation Theory of Finite Groups, Cambridge Studies in Advanced Mathematics, 11, Cambridge University Press, 1993.MATH J. L. Alperin, Local representation theory, Modular Representations as an Introduction to the Local Representation Theory of Finite Groups, Cambridge Studies in Advanced Mathematics, 11, Cambridge University Press, 1993.MATH
[AK]
Zurück zum Zitat Y. Andre, B. Kahn, with an appendix by P. O’Sullivan, Nilpotence, radicaux et structures monoídales, arXiv:math/0203273, Rendiconti del Seminario Matematico dell’Universita di Padova 108 (2002), 107–291. Y. Andre, B. Kahn, with an appendix by P. O’Sullivan, Nilpotence, radicaux et structures monoídales, arXiv:math/0203273, Rendiconti del Seminario Matematico dell’Universita di Padova 108 (2002), 107–291.
[BEEO]
Zurück zum Zitat J. Brundan, I. Entova-Aizenbud, P. Etingof, V. Ostrik, Semisimplification of the category of tilting modules for GL(n), Adv. Math. 375 (2020), 107331.MathSciNetCrossRef J. Brundan, I. Entova-Aizenbud, P. Etingof, V. Ostrik, Semisimplification of the category of tilting modules for GL(n), Adv. Math. 375 (2020), 107331.MathSciNetCrossRef
[B1]
Zurück zum Zitat D. J. Benson, Representations and Cohomology, I: Basic representation theory of finite groups and associative algebras, Cambridge University Press, 1995. D. J. Benson, Representations and Cohomology, I: Basic representation theory of finite groups and associative algebras, Cambridge University Press, 1995.
[B2]
Zurück zum Zitat D. J. Benson, Modular Representation theory, New trends and methods. SLNM 1081 (1984). D. J. Benson, Modular Representation theory, New trends and methods. SLNM 1081 (1984).
[CO]
Zurück zum Zitat J. Comes, V. Ostrik, On the Deligne category \( \underline { \mathop {\mathrm {Rep}} \nolimits }^{\mathrm {ab}}S_d\), arXiv:1304.3491, Algebra Number Theory 8 (2014), no. 2, 473–496. J. Comes, V. Ostrik, On the Deligne category \( \underline { \mathop {\mathrm {Rep}} \nolimits }^{\mathrm {ab}}S_d\), arXiv:1304.3491, Algebra Number Theory 8 (2014), no. 2, 473–496.
[D1]
Zurück zum Zitat P. Deligne, Catégories tannakiennes, in : The Grothendieck Festschrift, vol. 2, Birkhäuser P.M. 87 (1990), 111–198. P. Deligne, Catégories tannakiennes, in : The Grothendieck Festschrift, vol. 2, Birkhäuser P.M. 87 (1990), 111–198.
[D3]
Zurück zum Zitat P. Deligne, La catégorie des représentations du groupe symétrique St, lorsque t nest pas un entier naturel, in: Algebraic Groups and Homogeneous Spaces, in: Tata Inst. Fund. Res. Stud. Math., Tata Inst. Fund. Res., Mumbai, 2007, 209–273. P. Deligne, La catégorie des représentations du groupe symétrique St, lorsque t nest pas un entier naturel, in: Algebraic Groups and Homogeneous Spaces, in: Tata Inst. Fund. Res. Stud. Math., Tata Inst. Fund. Res., Mumbai, 2007, 209–273.
[DM]
Zurück zum Zitat P. Deligne, J. Milne, Tannakian categories, Lecture notes in Math. 900, 1981. P. Deligne, J. Milne, Tannakian categories, Lecture notes in Math. 900, 1981.
[EGO]
Zurück zum Zitat P. Etingof, S. Gelaki, V. Ostrik, Classification of fusion categories of dimension pq, Int. Math. Res. Not. 2004, no. 57, p. 3041–3056. P. Etingof, S. Gelaki, V. Ostrik, Classification of fusion categories of dimension pq, Int. Math. Res. Not. 2004, no. 57, p. 3041–3056.
[EOV]
Zurück zum Zitat P. Etingof, V. Ostrik, S. Venkatesh, Computations in symmetric fusion categories in characteristic p, arXiv:1512.02309, Int. Math. Res. Not. IMRN 2017, no. 2, p.468–489. P. Etingof, V. Ostrik, S. Venkatesh, Computations in symmetric fusion categories in characteristic p, arXiv:1512.02309, Int. Math. Res. Not. IMRN 2017, no. 2, p.468–489.
[EGNO]
Zurück zum Zitat P. Etingof, S. Gelaki, D. Nikshych, V. Ostrik, Tensor categories, AMS, 2015. P. Etingof, S. Gelaki, D. Nikshych, V. Ostrik, Tensor categories, AMS, 2015.
[G]
Zurück zum Zitat J. A. Green, On indecomposable representations of a finite group, Math. Zeitschrift, v. 70, p. 430–445, 1959.MathSciNetCrossRef J. A. Green, On indecomposable representations of a finite group, Math. Zeitschrift, v. 70, p. 430–445, 1959.MathSciNetCrossRef
[H]
Zurück zum Zitat T. Heidersdorf, On supergroups and their semisimplified representation categories, arXiv:1512.03420. T. Heidersdorf, On supergroups and their semisimplified representation categories, arXiv:1512.03420.
[Ha]
Zurück zum Zitat N. Harman, Deligne categories as limits in rank and characteristic, arXiv:1601.03426. N. Harman, Deligne categories as limits in rank and characteristic, arXiv:1601.03426.
[Ja]
[J]
Zurück zum Zitat J. C. Jantzen, Representations of algebraic groups, 2nd edition, American Mathematical Society, Providence, RI, 2003.MATH J. C. Jantzen, Representations of algebraic groups, 2nd edition, American Mathematical Society, Providence, RI, 2003.MATH
[MPS]
Zurück zum Zitat S. Morrison, E. Peters and N. Snyder, Categories generated by a trivalent vertex, Selecta Math. (N.S.) 23 (2017) no. 2, 817–868. S. Morrison, E. Peters and N. Snyder, Categories generated by a trivalent vertex, Selecta Math. (N.S.) 23 (2017) no. 2, 817–868.
[NZ]
[O1]
[O]
Zurück zum Zitat V. Ostrik, On symmetric fusion categories in positive characteristic, arXiv:1503.01492. V. Ostrik, On symmetric fusion categories in positive characteristic, arXiv:1503.01492.
[S]
Zurück zum Zitat P. O’Sullivan, The generalized Jacobson-Morozov theorem, Memoirs of the AMS, v.973, 2010. P. O’Sullivan, The generalized Jacobson-Morozov theorem, Memoirs of the AMS, v.973, 2010.
[SS]
Zurück zum Zitat J. Saxl, G. Seitz, Subgroups of algebraic groups containing regular unipotent elements, Journal of the London Mathematical Society / Volume 55 / Issue 02 / April 1997, pp 370–386. J. Saxl, G. Seitz, Subgroups of algebraic groups containing regular unipotent elements, Journal of the London Mathematical Society / Volume 55 / Issue 02 / April 1997, pp 370–386.
[W]
Zurück zum Zitat R. Weissauer, Semisimple algebraic tensor categories, arXiv:0909.1793. R. Weissauer, Semisimple algebraic tensor categories, arXiv:0909.1793.
Metadaten
Titel
On Semisimplification of Tensor Categories
verfasst von
Pavel Etingof
Victor Ostrik
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-030-82007-7_1