Skip to main content
Erschienen in:

14.08.2020 | Original Paper

On some binary symplectic self-orthogonal codes

verfasst von: Heqian Xu, Wei Du

Erschienen in: Applicable Algebra in Engineering, Communication and Computing | Ausgabe 3/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Symplectic self-orthogonal codes over finite fields are an important class of linear codes in coding theory, which can be used to construct quantum codes. In this paper, characterizations of symplectic self-orthogonal codes over finite fields \(F_{q}\) are given. A necessary and sufficient condition for determining symplectic self-orthogonal codes is obtained. Several classes of symplectic self-orthogonal codes are constructed. Furthermore, the symplectic weight distributions of some new classes of binary symplectic self-orthogonal codes are completely determined.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Aly, S.A., Klappenecker, A., Sarvepalli, P.K.: On quantum and classical BCH codes. IEEE Trans. Inf. Theory 53(3), 1183–1188 (2007)MathSciNetCrossRef Aly, S.A., Klappenecker, A., Sarvepalli, P.K.: On quantum and classical BCH codes. IEEE Trans. Inf. Theory 53(3), 1183–1188 (2007)MathSciNetCrossRef
2.
Zurück zum Zitat Ashikhmin, A., Knill, E.: Nonbinary quantum stablizer codes. IEEE Trans. Inf. Theory 47(7), 3065–3072 (2001)CrossRef Ashikhmin, A., Knill, E.: Nonbinary quantum stablizer codes. IEEE Trans. Inf. Theory 47(7), 3065–3072 (2001)CrossRef
4.
Zurück zum Zitat Boonniyoma, K., Jitman, S.: Complementary dual subfield linear codes over finite fields. [Online]. Available: arXiv:1605.06827 (2016) Boonniyoma, K., Jitman, S.: Complementary dual subfield linear codes over finite fields. [Online]. Available: arXiv:​1605.​06827 (2016)
6.
Zurück zum Zitat Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum error correction via codes over GF(4). IEEE Trans. Inf. Theory 44(4), 1369–1387 (1998)MathSciNetCrossRef Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum error correction via codes over GF(4). IEEE Trans. Inf. Theory 44(4), 1369–1387 (1998)MathSciNetCrossRef
7.
Zurück zum Zitat Carlet, C., Guilley, S.: Complementary dual codes for counter-measures to side—channel attacks. Coding Theory and Applications, pp. 97–105. Springer, Cham (2015)CrossRef Carlet, C., Guilley, S.: Complementary dual codes for counter-measures to side—channel attacks. Coding Theory and Applications, pp. 97–105. Springer, Cham (2015)CrossRef
8.
Zurück zum Zitat Chau, H.F.: Five quantum register error correction code for higher spin systems. Phys. Rev. A 56, 1–4 (1997)CrossRef Chau, H.F.: Five quantum register error correction code for higher spin systems. Phys. Rev. A 56, 1–4 (1997)CrossRef
9.
Zurück zum Zitat Chen, H., Ling, S., Xing, C.: Quantum codes from concatenated algebraic-geometric codes. IEEE Trans. Inf. Theory 51(8), 2915–2920 (2005)MathSciNetCrossRef Chen, H., Ling, S., Xing, C.: Quantum codes from concatenated algebraic-geometric codes. IEEE Trans. Inf. Theory 51(8), 2915–2920 (2005)MathSciNetCrossRef
10.
Zurück zum Zitat Cohen, G., Encheva, S., Litsyn, S.: On binary constructions of quantum codes. IEEE Trans. Inf. Theory 45(7), 2495–2498 (1999)MathSciNetCrossRef Cohen, G., Encheva, S., Litsyn, S.: On binary constructions of quantum codes. IEEE Trans. Inf. Theory 45(7), 2495–2498 (1999)MathSciNetCrossRef
11.
Zurück zum Zitat Du, Y., Ma, Y.: \([[2n, n]]\) additive quantum error correcting codes. J. Electron. 25(004), 519–522 (2008) Du, Y., Ma, Y.: \([[2n, n]]\) additive quantum error correcting codes. J. Electron. 25(004), 519–522 (2008)
12.
Zurück zum Zitat Feng, K.Q., Ma, Z.: A finite Gilbert–Varshmov Bound for pure stabilizer quantum codes. IEEE. Trans. Inf. Theory 50(12), 3323–3325 (2004)CrossRef Feng, K.Q., Ma, Z.: A finite Gilbert–Varshmov Bound for pure stabilizer quantum codes. IEEE. Trans. Inf. Theory 50(12), 3323–3325 (2004)CrossRef
13.
Zurück zum Zitat Grassl, M., Beth, T.: Quantum BCH codes. In: International Symposium on Theoretical Electrical Engineering, Magdeburg pp. 207–212 (1999) Grassl, M., Beth, T.: Quantum BCH codes. In: International Symposium on Theoretical Electrical Engineering, Magdeburg pp. 207–212 (1999)
14.
Zurück zum Zitat Jin, L., Xing, C., Zhang, X.: On the list-decodability of random self-orthogonal codes. IEEE. Trans. Inf. Theory 61(2), 820–828 (2015)MathSciNetCrossRef Jin, L., Xing, C., Zhang, X.: On the list-decodability of random self-orthogonal codes. IEEE. Trans. Inf. Theory 61(2), 820–828 (2015)MathSciNetCrossRef
15.
Zurück zum Zitat Kai, X., Li, P., Zhu, S.: Construction of quantum negacyclic BCH codes. Int. J. Quantum Inf. 6(7), 1850059 (2018)MathSciNetCrossRef Kai, X., Li, P., Zhu, S.: Construction of quantum negacyclic BCH codes. Int. J. Quantum Inf. 6(7), 1850059 (2018)MathSciNetCrossRef
16.
Zurück zum Zitat Ketkar, A., Klappenecker, A., Kumar, S., Sarvepalli, P.: Nonbinary stablizer codes over finite fields. IEEE. Trans. Inf. Theory 52(11), 4892–4914 (2006)CrossRef Ketkar, A., Klappenecker, A., Kumar, S., Sarvepalli, P.: Nonbinary stablizer codes over finite fields. IEEE. Trans. Inf. Theory 52(11), 4892–4914 (2006)CrossRef
17.
Zurück zum Zitat Li, R., Xu, Z., Li, X.: Standard forms of stabilizer and normalizer matrices for additive quantum codes. IEEE. Trans. Inf. Theory 54(8), 3775–3778 (2008)MathSciNetCrossRef Li, R., Xu, Z., Li, X.: Standard forms of stabilizer and normalizer matrices for additive quantum codes. IEEE. Trans. Inf. Theory 54(8), 3775–3778 (2008)MathSciNetCrossRef
18.
Zurück zum Zitat Li, Z., Xing, L.J., Wang, X.M.: A family of asymptotically good quantum codes based on code concatenation. IEEE. Trans. Inf. Theory 55(8), 3821–3824 (2009)MathSciNetCrossRef Li, Z., Xing, L.J., Wang, X.M.: A family of asymptotically good quantum codes based on code concatenation. IEEE. Trans. Inf. Theory 55(8), 3821–3824 (2009)MathSciNetCrossRef
19.
Zurück zum Zitat Shi, M., Zhang, Y.: Quasi-twisted codes with constacyclic constituent codes. Finite Fields Appl. 39, 159–178 (2016)MathSciNetCrossRef Shi, M., Zhang, Y.: Quasi-twisted codes with constacyclic constituent codes. Finite Fields Appl. 39, 159–178 (2016)MathSciNetCrossRef
20.
Zurück zum Zitat Shi, M., Qian, L., Sok, L., Solé, P.: On constacyclic codes over \(Z_{4}[u]/\langle u^2-1\rangle\) and their Gray images. Finite Fields Appl. 45, 86–95 (2017)MathSciNetCrossRef Shi, M., Qian, L., Sok, L., Solé, P.: On constacyclic codes over \(Z_{4}[u]/\langle u^2-1\rangle\) and their Gray images. Finite Fields Appl. 45, 86–95 (2017)MathSciNetCrossRef
21.
Zurück zum Zitat Shi, M., Sok, L., Solé, P.: Self-dual codes and orthogonal matrices over large finite fields. Finite Fields Appl. 54, 297–314 (2018)MathSciNetCrossRef Shi, M., Sok, L., Solé, P.: Self-dual codes and orthogonal matrices over large finite fields. Finite Fields Appl. 54, 297–314 (2018)MathSciNetCrossRef
22.
Zurück zum Zitat Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, 2493–2496 (1995)CrossRef Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, 2493–2496 (1995)CrossRef
23.
Zurück zum Zitat Zhou, Z., Tang, C., Li, X., Ding, C.: Binary LCD codes and self-orthogonal codes from a generic construction. IEEE Trans. Inf. Theory 65(1), 16–27 (2018)MathSciNetCrossRef Zhou, Z., Tang, C., Li, X., Ding, C.: Binary LCD codes and self-orthogonal codes from a generic construction. IEEE Trans. Inf. Theory 65(1), 16–27 (2018)MathSciNetCrossRef
Metadaten
Titel
On some binary symplectic self-orthogonal codes
verfasst von
Heqian Xu
Wei Du
Publikationsdatum
14.08.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Applicable Algebra in Engineering, Communication and Computing / Ausgabe 3/2022
Print ISSN: 0938-1279
Elektronische ISSN: 1432-0622
DOI
https://doi.org/10.1007/s00200-020-00455-7

Weitere Artikel der Ausgabe 3/2022

Applicable Algebra in Engineering, Communication and Computing 3/2022 Zur Ausgabe

Premium Partner