Skip to main content
Erschienen in: Applicable Algebra in Engineering, Communication and Computing 4/2022

09.09.2020 | Original Paper

On some conjectures about optimal ternary cyclic codes

verfasst von: Qian Liu, Ximeng Liu

Erschienen in: Applicable Algebra in Engineering, Communication and Computing | Ausgabe 4/2022

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Cyclic codes are a subclass of linear codes and have applications in consumer electronics, data storage systems and communication systems as they have efficient encoding and decoding algorithms. In this paper, by investigating the solutions of certain equations over finite fields, we make progress towards three conjectures about optimal ternary cyclic codes which were proposed by Ding and Helleseth.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Carlet, C., Ding, C., Yuan, J.: Linear codes from highly nonlinear functions and their secret sharing schemes. IEEE Trans. Inf. Theory. 51(6), 2089–2102 (2005)CrossRef Carlet, C., Ding, C., Yuan, J.: Linear codes from highly nonlinear functions and their secret sharing schemes. IEEE Trans. Inf. Theory. 51(6), 2089–2102 (2005)CrossRef
2.
3.
Zurück zum Zitat Ding, C., Helleseth, T.: Optimal ternary cyclic codes from monomials. IEEE Trans. Inf. Theory. 59(9), 5898–5904 (2013)MathSciNetCrossRef Ding, C., Helleseth, T.: Optimal ternary cyclic codes from monomials. IEEE Trans. Inf. Theory. 59(9), 5898–5904 (2013)MathSciNetCrossRef
4.
Zurück zum Zitat Ding, C., Yang, Y., Tang, X.: Optimal sets of frequency hopping sequences from linear cyclic codes. IEEE Trans. Inf. Theory. 56(7), 3605–3612 (2010)MathSciNetCrossRef Ding, C., Yang, Y., Tang, X.: Optimal sets of frequency hopping sequences from linear cyclic codes. IEEE Trans. Inf. Theory. 56(7), 3605–3612 (2010)MathSciNetCrossRef
5.
Zurück zum Zitat Fan, C., Li, N., Zhou, Z.: A class of optimal ternary cyclic codes and their duals. Finite Fields Appl. 37, 193–202 (2016)MathSciNetCrossRef Fan, C., Li, N., Zhou, Z.: A class of optimal ternary cyclic codes and their duals. Finite Fields Appl. 37, 193–202 (2016)MathSciNetCrossRef
6.
Zurück zum Zitat Feng, K., Luo, J.: Value distributions of exponential sums from perfect nonlinear functions and their applications. IEEE Trans. Inf. Theory. 62(3), 3035–3041 (2007)MathSciNetCrossRef Feng, K., Luo, J.: Value distributions of exponential sums from perfect nonlinear functions and their applications. IEEE Trans. Inf. Theory. 62(3), 3035–3041 (2007)MathSciNetCrossRef
7.
Zurück zum Zitat Feng, T.: On cyclic codes of length \(2^{2^r}-1\) with two zeros whose dual codes have three weights. Des. Codes Cryptogr. 62(3), 253–258 (2012)MathSciNetCrossRef Feng, T.: On cyclic codes of length \(2^{2^r}-1\) with two zeros whose dual codes have three weights. Des. Codes Cryptogr. 62(3), 253–258 (2012)MathSciNetCrossRef
8.
Zurück zum Zitat Han, D., Yan, H.: On an open problem about a class of optimal ternary cyclic codes. Finite Fields Appl. 59, 335–343 (2019)MathSciNetCrossRef Han, D., Yan, H.: On an open problem about a class of optimal ternary cyclic codes. Finite Fields Appl. 59, 335–343 (2019)MathSciNetCrossRef
9.
Zurück zum Zitat Huffman, W.C., Pless, V.: Foundamentals of Error-Ccorrecting Codes. Cambridge University Press, Cambridge (2003)CrossRef Huffman, W.C., Pless, V.: Foundamentals of Error-Ccorrecting Codes. Cambridge University Press, Cambridge (2003)CrossRef
10.
Zurück zum Zitat Li, C., Yue, Q., Li, F.: Weight distributions of cyclic codes with respect to pairwise coprime order elements. Finite Fields Appl. 28, 94–114 (2014)MathSciNetCrossRef Li, C., Yue, Q., Li, F.: Weight distributions of cyclic codes with respect to pairwise coprime order elements. Finite Fields Appl. 28, 94–114 (2014)MathSciNetCrossRef
11.
Zurück zum Zitat Li, N., Li, C., Helleseth, T., Ding, C., Tang, X.: Optimal ternary cyclic codes with minimun distance four and five. Finite Fields Appl. 30, 100–120 (2014)MathSciNetCrossRef Li, N., Li, C., Helleseth, T., Ding, C., Tang, X.: Optimal ternary cyclic codes with minimun distance four and five. Finite Fields Appl. 30, 100–120 (2014)MathSciNetCrossRef
12.
Zurück zum Zitat Li, N., Zhou, Z., Helleseth, T.: On a conjecture about a class of optimal ternary cyclic codes. In: 2015 Seventh International Workshop on Signal Design and its Applications in Communications (IWSDA) (2015) Li, N., Zhou, Z., Helleseth, T.: On a conjecture about a class of optimal ternary cyclic codes. In: 2015 Seventh International Workshop on Signal Design and its Applications in Communications (IWSDA) (2015)
13.
Zurück zum Zitat Lidl, R., Niederreiter, H.: Finite fields, Finite Fields.Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge (1997) Lidl, R., Niederreiter, H.: Finite fields, Finite Fields.Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge (1997)
14.
Zurück zum Zitat Liu, Y., Cao, X., Lu, W.: On some conjectures about optimal ternary cyclic codes. Des. Codes Cryptogr. 88, 297–309 (2020)MathSciNetCrossRef Liu, Y., Cao, X., Lu, W.: On some conjectures about optimal ternary cyclic codes. Des. Codes Cryptogr. 88, 297–309 (2020)MathSciNetCrossRef
15.
Zurück zum Zitat Wang, L., Wu, G.: Several classes of optimal ternary cyclic codes with minimal distance four. Finite Fields Appl. 40, 126–137 (2016)MathSciNetCrossRef Wang, L., Wu, G.: Several classes of optimal ternary cyclic codes with minimal distance four. Finite Fields Appl. 40, 126–137 (2016)MathSciNetCrossRef
16.
Zurück zum Zitat Xu, G., Cao, X., Xu, S.: Weight distributions of cyclic codes with respect to pairwise coprime order elements. Cryptogr. Commun. 8, 541–554 (2016)MathSciNetCrossRef Xu, G., Cao, X., Xu, S.: Weight distributions of cyclic codes with respect to pairwise coprime order elements. Cryptogr. Commun. 8, 541–554 (2016)MathSciNetCrossRef
17.
Zurück zum Zitat Yan, H., Zhou, Z., Du, X.: A family of optimal ternary cyclic codes from the Niho-type exponent. Finite Fields Appl. 54, 101–112 (2018)MathSciNetCrossRef Yan, H., Zhou, Z., Du, X.: A family of optimal ternary cyclic codes from the Niho-type exponent. Finite Fields Appl. 54, 101–112 (2018)MathSciNetCrossRef
18.
Zurück zum Zitat Zeng, X., Hu, L., Jiang, W., Yue, Q., Cao, X.: The weight distribution of a class of \(p\)-ary cyclic codes. Finite Fields Appl. 16(1), 56–73 (2010)MathSciNetCrossRef Zeng, X., Hu, L., Jiang, W., Yue, Q., Cao, X.: The weight distribution of a class of \(p\)-ary cyclic codes. Finite Fields Appl. 16(1), 56–73 (2010)MathSciNetCrossRef
19.
Zurück zum Zitat Zeng, X., Shan, J., Hu, L.: A triple-error-correcting cyclic code from the Gold and Kasami-Welch APN power functions. Finite Fields Appl. 18(1), 70–92 (2012)MathSciNetCrossRef Zeng, X., Shan, J., Hu, L.: A triple-error-correcting cyclic code from the Gold and Kasami-Welch APN power functions. Finite Fields Appl. 18(1), 70–92 (2012)MathSciNetCrossRef
20.
Zurück zum Zitat Zha, Z., Hu, L.: New classes of optimal ternary cyclic codes with minimum distance four. Finite Fields Appl. 64, 101671 (2020)MathSciNetCrossRef Zha, Z., Hu, L.: New classes of optimal ternary cyclic codes with minimum distance four. Finite Fields Appl. 64, 101671 (2020)MathSciNetCrossRef
21.
Zurück zum Zitat Zhou, Z., Ding, C.: Seven classes of three-weight cyclic codes. IEEE Trans. Commun. 61(10), 4120–4126 (2013)CrossRef Zhou, Z., Ding, C.: Seven classes of three-weight cyclic codes. IEEE Trans. Commun. 61(10), 4120–4126 (2013)CrossRef
Metadaten
Titel
On some conjectures about optimal ternary cyclic codes
verfasst von
Qian Liu
Ximeng Liu
Publikationsdatum
09.09.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Applicable Algebra in Engineering, Communication and Computing / Ausgabe 4/2022
Print ISSN: 0938-1279
Elektronische ISSN: 1432-0622
DOI
https://doi.org/10.1007/s00200-020-00458-4

Weitere Artikel der Ausgabe 4/2022

Applicable Algebra in Engineering, Communication and Computing 4/2022 Zur Ausgabe