Skip to main content
Erschienen in: Automatic Control and Computer Sciences 7/2019

01.12.2019

On Some Problems for a Simplex and a Ball in \({{\mathbb{R}}^{n}}\)

verfasst von: M. V. Nevskii

Erschienen in: Automatic Control and Computer Sciences | Ausgabe 7/2019

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Let \(C\) be a convex body and let \(S\) be a nondegenerate simplex in \({{\mathbb{R}}^{n}}\). Denote by \(\tau S\) the image of \(S\) under the homothety with center of homothety in the center of gravity of \(S\) and ratio of homothety \(\tau \). We mean by \(\xi (C;S)\) the minimal \(\tau > 0\) such that \(C\) is a subset of the simplex \(\tau S\). Define \(\alpha (C;S)\) as the minimal \(\tau > 0\) such that \(C\) is contained in a translate of \(\tau S\). Earlier the author has proved the equalities \(\xi (C;S) = (n + 1)\mathop {\max }\limits_{1 \leqslant j \leqslant n + 1} \mathop {\max }\limits_{x \in C} ( - {{\lambda }_{j}}(x)) + 1\) (if \(C { \text{⊄} }S\)), \(\alpha (C;S) = \sum\nolimits_{j = 1}^{n + 1} {\mathop {\max }\limits_{x \in C} ( - {{\lambda }_{j}}(x)) + 1.} \) Here \({{\lambda }_{j}}\) are linear functions called the basic Lagrange polynomials corresponding to \(S\). The numbers \({{\lambda }_{j}}(x), \ldots ,{{\lambda }_{{n + 1}}}(x)\) are the barycentric coordinates of a point \(x \in {{\mathbb{R}}^{n}}\). In his previous papers, the author has investigated these formulae in the case when \(C\) is the \(n\)-dimensional unit cube \({{Q}_{n}} = {{[0,1]}^{n}}\). The present paper is related to the case when \(C\) coincides with the unit Euclidean ball \({{B}_{n}} = \{ x:\left| {\left| x \right|} \right| \leqslant 1\} ,\) where \(\left| {\left| x \right|} \right| = \mathop {\left( {\sum\nolimits_{i = 1}^n {x_{i}^{2}} \,} \right)}\nolimits^{1/2} .\) We establish various relations for \(\xi ({{B}_{n}};S)\) and \(\alpha ({{B}_{n}};S)\), as well as we give their geometric interpretation. For example, if  \({{\lambda }_{j}}(x){{l}_{{1j}}}{{x}_{1}} + \ldots + {{l}_{{nj}}}{{x}_{n}} + {{l}_{{n + 1,j}}},\) then \(\alpha ({{B}_{n}};S) = \sum\nolimits_{j = 1}^{n + 1} {{{{\left( {\sum\nolimits_{i = 1}^n {l_{{ij}}^{2}} } \right)}}^{{{\text{1}}{\text{/}}{\text{2}}}}}} \). The minimal possible value of each characteristic \(\xi ({{B}_{n}};S)\) and \(\alpha ({{B}_{n}};S)\) for \(S \subset {{B}_{n}}\) is equal to \(n\). This value corresponds to a regular simplex inscribed into \({{B}_{n}}\). Also we compare our results with those obtained in the case \(C = {{Q}_{n}}\).
Literatur
1.
Zurück zum Zitat Nevskij, M.V., On a certain relation for the minimal norm of an interpolational projection, Model. Anal. Inf. Sist., 2009, vol. 16, no. 1, pp. 24–43. Nevskij, M.V., On a certain relation for the minimal norm of an interpolational projection, Model. Anal. Inf. Sist., 2009, vol. 16, no. 1, pp. 24–43.
2.
3.
Zurück zum Zitat Nevskii, M.V., Geometricheskie otsenki v polinomial’noi interpolyatsii (Geometric Estimates in Polynomial Interpolation), Yaroslavl: Yarosl. Gos. Univ., 2012. Nevskii, M.V., Geometricheskie otsenki v polinomial’noi interpolyatsii (Geometric Estimates in Polynomial Interpolation), Yaroslavl: Yarosl. Gos. Univ., 2012.
4.
Zurück zum Zitat Nevskii, M.V., On the minimal positive homothetic image of a simplex containing a convex body, Math. Notes, 2013, vol. 93, nos. 3–4, pp. 470–478.MathSciNetCrossRef Nevskii, M.V., On the minimal positive homothetic image of a simplex containing a convex body, Math. Notes, 2013, vol. 93, nos. 3–4, pp. 470–478.MathSciNetCrossRef
5.
Zurück zum Zitat Nevskii, M.V. and Ukhalov, A.Yu., On numerical characteristics of a simplex and their estimates, Model. Anal. Inf. Sist., 2016, vol. 23, no. 5, pp. 603-619.MathSciNetCrossRef Nevskii, M.V. and Ukhalov, A.Yu., On numerical characteristics of a simplex and their estimates, Model. Anal. Inf. Sist., 2016, vol. 23, no. 5, pp. 603-619.MathSciNetCrossRef
6.
Zurück zum Zitat Nevskii, M.V. and Ukhalov, A.Yu., New estimates of numerical values related to a simplex, Model. Anal. Inf. Sist., 2017, vol. 24, no. 1, pp. 94-110.MathSciNetCrossRef Nevskii, M.V. and Ukhalov, A.Yu., New estimates of numerical values related to a simplex, Model. Anal. Inf. Sist., 2017, vol. 24, no. 1, pp. 94-110.MathSciNetCrossRef
7.
Zurück zum Zitat Nevskii, M.V. and Ukhalov, A.Yu., On n-dimensional simplices satisfying inclusions S ⊂ [0,1]n ⊂ nS,Model. Anal. Inf. Sist., 2017, vol. 24, no. 5, pp. 578–595.MathSciNetCrossRef Nevskii, M.V. and Ukhalov, A.Yu., On n-dimensional simplices satisfying inclusions S ⊂ [0,1]nnS,Model. Anal. Inf. Sist., 2017, vol. 24, no. 5, pp. 578–595.MathSciNetCrossRef
8.
Zurück zum Zitat Nevskii, M.V. and Ukhalov, A.Yu., On minimal absorption index for an n-dimensional simplex, Model. Anal. Inf. Sist., 2018, vol. 25, no. 1, pp. 140-150.MathSciNetCrossRef Nevskii, M.V. and Ukhalov, A.Yu., On minimal absorption index for an n-dimensional simplex, Model. Anal. Inf. Sist., 2018, vol. 25, no. 1, pp. 140-150.MathSciNetCrossRef
9.
Zurück zum Zitat Hudelson, M., Klee, V., and Larman, D., Largest j-simplices in d-cubes: Some relatives of the Hadamard maximum determinant problem, Linear Algebra Appl., 1996, vols. 241–243, pp. 519–598.MathSciNetCrossRef Hudelson, M., Klee, V., and Larman, D., Largest j-simplices in d-cubes: Some relatives of the Hadamard maximum determinant problem, Linear Algebra Appl., 1996, vols. 241–243, pp. 519–598.MathSciNetCrossRef
10.
Zurück zum Zitat Klamkin, M.S. and Tsifinis, G.A., Circumradius-inradius inequality for a simplex, Math. Mag., 1979, vol. 52, no. 1, pp. 20–22.MathSciNetCrossRef Klamkin, M.S. and Tsifinis, G.A., Circumradius-inradius inequality for a simplex, Math. Mag., 1979, vol. 52, no. 1, pp. 20–22.MathSciNetCrossRef
11.
Zurück zum Zitat Nevskii, M., Properties of axial diameters of a simplex, Discrete Comput. Geom., 2011, vol. 46, no. 2, pp. 301–312.MathSciNetCrossRef Nevskii, M., Properties of axial diameters of a simplex, Discrete Comput. Geom., 2011, vol. 46, no. 2, pp. 301–312.MathSciNetCrossRef
12.
Zurück zum Zitat Nevskii, M. and Ukhalov, A., Perfect simplices in ℝ5, Beitr. Algebra Geom., 2018, vol. 59, no. 3, pp. 501–521.MathSciNetCrossRef Nevskii, M. and Ukhalov, A., Perfect simplices in ℝ5, Beitr. Algebra Geom., 2018, vol. 59, no. 3, pp. 501–521.MathSciNetCrossRef
13.
Zurück zum Zitat Yang, S. and Wang, J., Improvements of n-dimensional Euler inequality, J. Geom., 1994, vol. 51, pp. 190–195.MathSciNetCrossRef Yang, S. and Wang, J., Improvements of n-dimensional Euler inequality, J. Geom., 1994, vol. 51, pp. 190–195.MathSciNetCrossRef
Metadaten
Titel
On Some Problems for a Simplex and a Ball in
verfasst von
M. V. Nevskii
Publikationsdatum
01.12.2019
Verlag
Pleiades Publishing
Erschienen in
Automatic Control and Computer Sciences / Ausgabe 7/2019
Print ISSN: 0146-4116
Elektronische ISSN: 1558-108X
DOI
https://doi.org/10.3103/S0146411619070162

Weitere Artikel der Ausgabe 7/2019

Automatic Control and Computer Sciences 7/2019 Zur Ausgabe

Neuer Inhalt