Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

08.09.2018 | Regular Research Paper | Ausgabe 2/2019

Memetic Computing 2/2019

On the choice of neighborhood sampling to build effective search operators for constrained MOPs

Zeitschrift:
Memetic Computing > Ausgabe 2/2019
Autoren:
Adriana Lara, Lourdes Uribe, Sergio Alvarado, Víctor Adrián Sosa, Honggang Wang, Oliver Schütze
Wichtige Hinweise
A. Lara acknowledges support from Project SIP20181450.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

For the treatment of multi-objective optimization problems (MOPs) sto-chas-tic search algorithms such as multi-objective evolutionary algorithms (MOEAs) are very popular due to their global set based approach. Multi-objective stochastic local search (MOSLS) represents a powerful tool within MOEAs which is crucial for the guidance of the populations’ individuals. The success of variation operators in evolutionary algorithms is related to survival chances of their new generated individuals. Though individual feasibility determines directly the survival chances, in MOEAs, regular variation operators do not consider any information from the constraints. Recently, an initial study has been done for unconstrained MOPs revealing that a pressure both toward and along the Pareto front is inherent in MOSLS by which the behavior of many MOEAs in different stages of the search could be explained to a certain extent. In the present paper we go further to study the implications of MOSLS for the constrained case and propose the construction of subspace based movements during the search; we identify how neighborhood samples have to be chosen such that a movement along the Pareto front is achieved, for points near the Pareto set of a given constrained MOP. Next, we present two applications of these insights, namely (i) to explore the behavior of a population based algorithm that is merely using this proposed neighborhood sampling and (ii) to build a specialized mutation operator for effectively explore search regions on constrained MOPs, where the constraints are given explicitly. Numerical results indicate that these ideas yield competitive results in most cases. We conjecture that these insights are valuable for the future design of specialized search operators for memetic algorithms dealing with constrained multi-objective search spaces.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 2/2019

Memetic Computing 2/2019 Zur Ausgabe

Editorial

Editorial

Premium Partner

    Bildnachweise