1 Introduction
2 Preliminaries
2.1 Construction of the network
2.2 Problem statement
2.3 Further notations
-
The initial vector of the iteration is \(z^{(1)} = {\hat{x}} \in {\mathbb {R}}^K\). Let \(z_i^{(l)}(x)\) denote the input value of the i-th neuron in the l-th layer and use \(z_{i} (x) = \lim _{{l \to \infty }} z_{i}^{{(l)}} (x)\) provided that this exists and is finite. In vector form, we haveSometimes, for simplicity, we omit the arguments x.$$\begin{aligned} {z^{(l)}(x)=\left( z_1^{(l)}(x),\dots ,z_K^{(l)}(x) \right) ^T\quad \text {and}\quad z (x)=\left( z_1 (x),\dots ,z_K (x) \right) ^T.} \end{aligned}$$
-
Let \(a_i^{(l)}(x)\) denote the activation value of the i-th neuron in the l-th layer with the input vector x. We use the notation \(a_{i} (x) = \lim _{{l \to \infty }} a_{i}^{{(l)}} (x),\) provided that this exists and is finite. Accordingly, we useand \(a (x)=\left( a_1 (x),\dots ,a_K (x) \right) ^T.\)$$\begin{aligned} f(z^{(l)})(x) = a^{(l)}(x)=\left( a_1^{(l)}(x),\dots ,a_K^{(l)}(x) \right) ^T \end{aligned}$$
-
Parallel with the formula (5), we also introduce \(d^{(\infty )} \in {\mathbb {R}}^K\) asHere, the activation function \(f_j: {\mathbb {R}} \rightarrow {\mathbb {R}}\), which is applied to the j-th neuron.$$\begin{aligned} d^{(\infty )}_j = {\left\{ \begin{array}{ll} \left( a_j - {\tilde{y}}_j^{(m)} \right) {f_j}' (z_j), \quad K-N< j \le K\\ 0, \quad 1\le j \le K-N. \end{array}\right. } \end{aligned}$$
-
We use the notationfor the utility value of the i-th neuron in the l-th layer and \(D_{i} = \lim _{{l \to \infty }} D_{i}^{{(l)}}\) provided that it exists and is finite. We also define the diagonal matrix \(D \in {\mathbb {R}}^{K \times K}\) such that \(D = \textrm{diag} \left( D_{1}, \dots , D_{K} \right)\) and similarly, the diagonal matrices \(D^{(l)} \in {\mathbb {R}}^{K \times K}\) on the l-th layer.$$\begin{aligned} D_{i}^{(l)} = f'_{i} (z_{i}^{(l)}) \end{aligned}$$
3 Theoretical results
3.1 Computational complexity
4 Numerical experiments
4.1 The investigated datasets
4.1.1 The HTRU2 dataset
Sample type | Training | Validation | Testing |
---|---|---|---|
All | 26,353 | 2929 | 1790 |
Non-pulsar | 13,164 | 1477 | 1618 |
Pulsar | 13,189 | 1452 | 172 |
4.1.2 The NSL-KDD dataset
Sample type | Training | Validation | Testing |
---|---|---|---|
All | 94,479 | 31,494 | 22,544 |
Benign | 50,528 | 16,815 | 12,833 |
Attack | 43,951 | 14,679 | 9711 |
4.2 Evaluation metrics
-
Accuracy (\(A_c\)) It is the ratio of all correctly identified instances, positive and negative classes, to the total number of instances in the dataset with a given classification threshold c. This quantity is given by the formula$$\begin{aligned} A_c = \frac{\textrm{TP}_c+\textrm{TN}_c}{\textrm{TP}_c + \textrm{TN}_c+ \textrm{FP}_c+ \textrm{FN}_c}. \end{aligned}$$
-
Precision (\(P_c\)) It is defined as the ratio of correctly identified positive instances and the total number of instances classified as positive. This metric evaluates the accuracy of positive predictions with a given classification threshold c as follows:$$\begin{aligned} P_c = \frac{\textrm{TP}_c}{\textrm{TP}_c + \textrm{FP}_c}. \end{aligned}$$
-
Recall (\(R_c\)) or True Positive Rate (\(\textrm{TPR}_c\)) It quantifies the percentage of positive cases correctly identified with a given c classification threshold. It can be calculated using the following equation:$$\begin{aligned} R_c = \textrm{TPR}_c = \frac{\textrm{TP}_c}{\textrm{TP}_c + \textrm{FN}_c}. \end{aligned}$$
-
Matthew’s Correlation Coefficient (\(\textrm{MCC}_c\)) We use this as the primary metric to represent the best performance the model can achieve at a fixed threshold c. It is in the range between \(-1\) and 1, where one indicates a perfect prediction and \(-1\) means all predictions are false. In concrete terms, this score is given by$$\begin{aligned} \textrm{MCC}_c = \frac{\textrm{TP}_c \cdot \textrm{TN}_c - \textrm{FP}_c \cdot \textrm{FN}_c}{\sqrt{\left( \textrm{TP}_c+\textrm{FP}_c \right) \cdot \left( \textrm{TP}_c+\textrm{FN}_c \right) \cdot \left( \textrm{TN}_c+\textrm{FP}_c \right) \cdot \left( \textrm{TN}_c+\textrm{FN}_c \right) }}. \end{aligned}$$
-
F1-score (\(\textrm{F1}_c\)) It is the harmonic mean of the precision and recall values, it can be calculated as follows.$$\begin{aligned} \textrm{F1}_c = 2 \cdot \frac{P_c \cdot R_c}{P_c+R_c} \end{aligned}$$
4.3 Training approach
4.4 The proposed implicit autoencoder models
-
Encoder It compresses the input into a latent-space representation. It learns the most important features of the data, effectively reducing its dimensionality.
-
Decoder It reconstructs the input data from the latent space representation, aiming to compute output as close to the original input as possible.
-
Latent Layer This is the core of the autoencoder: a compressed knowledge representation of the input data between the encoder and decoder.
Model name | Number of neurons for each layer | TP-H | TP-N |
---|---|---|---|
\((5;32;8)-v0\) |
\(I - 32 - 16 - 8 - 16 - 32 - I\) | 1904 | 8989 |
\((5;64;8)-v0\) |
\(I - 64 - 32 - 8 - 32 - 64 - I\) | 5840 | 19,901 |
\((7;64;8)-v0\) |
\(I - 64 - 32 - 16 - 8 - 16 - 32 - 64 - I\) | 6640 | 20,701 |
\((5;32;16)-v0\) |
\(I - 32 - 16 - 16 - 16 - 32 - I\) | 2168 | 9253 |
\((5;64;16)-v0\) |
\(I - 64 - 32 - 16 - 32 - 64 - I\) | 6360 | 20,421 |
\((7;64;16)-v0\) |
\(I - 64 - 32 - 16 - 16 - 16 - 32 - 64 - I\) | 6904 | 20,965 |
\((5;32;8)-v1\) |
\(I - 32 - 16 - 8 - 16 - 32 - I\) | 1960 | 9045 |
\((5;64;8)-v1\) |
\(I - 64 - 32 - 8 - 32 - 64 - I\) | 5896 | 19,957 |
\((7;64;8)-v1\) |
\(I - 64 - 32 - 16 - 8 - 16 - 32 - 64 - I\) | 6696 | 20,757 |
\((5;32;16)-v1\) |
\(I - 32 - 16 - 16 - 16 - 32 - I\) | 2408 | 9493 |
\((5;64;16)-v1\) |
\(I - 64 - 32 - 16 - 32 - 64 - I\) | 6600 | 20,661 |
\((7;64;16)-v1\) |
\(I - 64 - 32 - 16 - 16 - 16 - 32 - 64 - I\) | 7144 | 21,205 |
\((5;32;8)-v2\) |
\(I - 32 - 16 - (8,8) - 16 - 32 - I\) | 1968 | 9053 |
\((5;64;8)-v2\) |
\(I - 64 - 32 - (8,8) - 32 - 64 - I\) | 5904 | 19,965 |
\((7;64;8)-v2\) |
\(I - 64 - 32 - 16 - (8,8) - 16 - 32 - 64 - I\) | 6704 | 20,765 |
\((5;32;16)-v2\) |
\(I - 32 - 16 - (16,16) - 16 - 32 - I\) | 2424 | 9509 |
\((5;64;16)-v2\) |
\(I - 64 - 32 - (16,16) - 32 - 64 - I\) | 6616 | 20,677 |
\((7;64;16)-v2\) |
\(I - 64 - 32 - 16 - (16,16) - 16 - 32 - 64 - I\) | 7160 | 21,221 |
4.5 Experiment environment
5 Numerical results
5.1 The HTRU2 dataset
Model name | BVF1 | CTF1 | CTMCC | CTA | CTP | CTR |
---|---|---|---|---|---|---|
\((5;32;8)-v0\) |
\(\mathbf {0.9263}\) |
\(\mathbf {0.8468}\) |
\(\mathbf {0.8307}\) |
\(\mathbf {0.9693}\) |
\(\mathbf {0.8128}\) | 0.8837 |
\((5;64;8)-v0\) |
\(\mathbf {0.9368}\) | 0.7959 | 0.7786 | 0.9553 | 0.7091 |
\(\mathbf {0.9070}\) |
\((7;64;8)-v0\) | 0.9154 | 0.7568 | 0.7377 | 0.9447 | 0.6553 |
\(\mathbf {0.8953}\) |
\((5;32;16)-v0\) |
\(\mathbf {0.9263}\) | 0.7666 | 0.7489 | 0.9469 | 0.6638 |
\(\mathbf {0.9070}\) |
\((5;64;16)-v0\) | 0.9253 |
\(\mathbf {0.7990}\) |
\(\mathbf {0.7802}\) |
\(\mathbf {0.9570}\) |
\(\mathbf {0.7251}\) | 0.8895 |
\((7;64;16)-v0\) | 0.9163 | 0.7463 | 0.7265 | 0.9419 | 0.6429 | 0.8895 |
\((5;32;8)-v1\) | 0.9244 | 0.7711 | 0.7528 | 0.9486 | 0.6739 | 0.9012 |
\((5;64;8)-v1\) | 0.9256 | 0.6781 | 0.6638 | 0.9162 | 0.5374 |
\(\underline{\mathbf {0.9186}}\) |
\((7;64;8)-v1\) | 0.9279 | 0.7792 | 0.7622 | 0.9503 | 0.6797 |
\(\mathbf {0.9128}\) |
\((5;32;16)-v1\) | 0.9282 |
\(\underline{\mathbf {0.8483}}\) |
\(\underline{\mathbf {0.8322}}\) |
\(\underline{\mathbf {0.9698}}\) |
\(\underline{\mathbf {0.8207}}\) | 0.8779 |
\((5;64;16)-v1\) |
\(\mathbf {0.9293}\) |
\(\mathbf {0.8115}\) |
\(\mathbf {0.7942}\) |
\(\mathbf {0.9598}\) |
\(\mathbf {0.7381}\) | 0.9012 |
\((7;64;16)-v1\) |
\(\mathbf {0.9301}\) | 0.7393 | 0.7217 | 0.9385 | 0.6240 | 0.9070 |
\((5;32;8)-v2\) | 0.9287 | 0.7482 | 0.7305 | 0.9413 | 0.6367 | 0.9070 |
\((5;64;8)-v2\) |
\(\mathbf {0.9288}\) |
\(\mathbf {0.7949}\) |
\(\mathbf {0.7782}\) |
\(\mathbf {0.9547}\) |
\(\mathbf {0.7040}\) |
\(\mathbf {0.9128}\) |
\((7;64;8)-v2\) | 0.9226 |
\(\mathbf {0.8257}\) |
\(\mathbf {0.8087}\) |
\(\mathbf {0.9637}\) |
\(\mathbf {0.7662}\) | 0.8953 |
\((5;32;16)-v2\) |
\(\mathbf {0.9304}\) | 0.7859 | 0.7684 | 0.9525 | 0.6933 | 0.9070 |
\((5;64;16)-v2\) |
\(\mathbf {0.9304}\) | 0.7378 | 0.7227 | 0.9369 | 0.6139 |
\(\underline{\mathbf {0.9244}}\) |
\((7;64;16)-v2\) | 0.9253 | 0.7185 | 0.7021 | 0.9313 | 0.5925 |
\(\mathbf {0.9128}\) |
XGBoost |
\(\underline{0.9787}\) |
\(\underline{0.8674}\) |
\(\underline{0.8538}\) |
\(\underline{0.9732}\) |
\(\underline{0.9085}\) | 0.9128 |
Random Forest |
\(\underline{0.9773}\) |
\(\underline{0.8674}\) |
\(\underline{0.8538}\) |
\(\underline{0.9732}\) |
\(\underline{0.9085}\) | 0.9128 |
Model name | AVF1 | ATF1 | ATMCC | ATA | ATP | ATR |
---|---|---|---|---|---|---|
\((5;32;8)-v0\) | 0.9162 | 0.7577 | 0.7396 | 0.9441 | 0.6603 | 0.8959 |
\((5;64;8)-v0\) |
\(\mathbf {0.9207}\) | 0.7600 | 0.7416 | 0.9450 | 0.6614 |
\(\mathbf {0.8971}\) |
\((7;64;8)-v0\) | 0.9113 | 0.7161 | 0.6973 | 0.9312 | 0.6002 | 0.8930 |
\((5;32;16)-v0\) | 0.9163 |
\(\mathbf {0.7650}\) |
\(\mathbf {0.7458}\) |
\(\mathbf {0.9472}\) |
\(\mathbf {0.6694}\) | 0.8930 |
\((5;64;16)-v0\) |
\(\mathbf {0.9213}\) |
\(\mathbf {0.7676}\) |
\(\mathbf {0.7497}\) |
\(\mathbf {0.9470}\) |
\(\mathbf {0.6731}\) |
\(\mathbf {0.8988}\) |
\((7;64;16)-v0\) | 0.9113 | 0.7341 | 0.7147 | 0.9375 | 0.6276 | 0.8890 |
\((5;32;8)-v1\) | 0.9204 |
\(\mathbf {0.7513}\) |
\(\mathbf {0.7334}\) |
\(\mathbf {0.9420}\) |
\(\mathbf {0.6454}\) |
\(\mathbf {0.9023}\) |
\((5;64;8)-v1\) |
\(\mathbf {0.9228}\) | 0.7430 | 0.7261 | 0.9387 | 0.6338 |
\(\mathbf {0.9058}\) |
\((7;64;8)-v1\) | 0.9198 | 0.7392 | 0.7212 | 0.9382 | 0.6304 | 0.8994 |
\((5;32;16)-v1\) | 0.9207 | 0.7317 | 0.7140 | 0.9355 | 0.6219 | 0.8983 |
\((5;64;16)-v1\) |
\(\mathbf {0.9233}\) |
\(\mathbf {0.7477}\) |
\(\mathbf {0.7296}\) |
\(\mathbf {0.9409}\) |
\(\mathbf {0.6410}\) | 0.9012 |
\((7;64;16)-v1\) | 0.9203 | 0.7471 | 0.7294 | 0.9406 | 0.6401 |
\(\mathbf {0.9023}\) |
\((5;32;8)-v2\) | 0.9212 | 0.7459 | 0.7278 | 0.9404 | 0.6391 | 0.9000 |
\((5;64;8)-v2\) |
\(\mathbf {0.9225}\) | 0.7628 | 0.7446 | 0.9458 | 0.6651 | 0.8983 |
\((7;64;8)-v2\) | 0.9188 |
\(\mathbf {0.7694}\) |
\(\mathbf {0.7517}\) |
\(\mathbf {0.9474}\) |
\(\mathbf {0.6781}\) | 0.8971 |
\((5;32;16)-v2\) | 0.9214 | 0.7653 | 0.7474 | 0.9462 | 0.6708 | 0.8977 |
\((5;64;16)-v2\) |
\(\mathbf {0.9221}\) | 0.7398 | 0.7218 | 0.9387 | 0.6290 |
\(\mathbf {0.9012}\) |
\((7;64;16)-v2\) | 0.9201 |
\(\mathbf {0.7707}\) |
\(\mathbf {0.7529}\) |
\(\mathbf {0.9479}\) |
\(\mathbf {0.6761}\) |
\(\mathbf {0.9006}\) |
XGBoost |
\(\underline{0.9732}\) |
\(\underline{0.8643}\) |
\(\underline{0.8506}\) |
\(\underline{0.9725}\) |
\(\underline{0.9063}\) |
\(\underline{0.9116}\) |
Random Forest |
\(\underline{0.9711}\) |
\(\underline{0.8621}\) |
\(\underline{0.8482}\) |
\(\underline{0.9796}\) |
\(\underline{0.9039}\) |
\(\underline{0.9122}\) |
5.2 The NSL-KDD dataset
Model name | BVF1 | CTF1 | CTMCC | CTA | CTP | CTR |
---|---|---|---|---|---|---|
\((5;32;8)-v0\) |
\(\mathbf {0.9380}\) |
\(\mathbf {0.9033}\) |
\(\mathbf {0.7798}\) |
\(\mathbf {0.8914}\) | 0.9156 |
\(\mathbf {0.8914}\) |
\((5;64;8)-v0\) | 0.9369 | 0.8682 | 0.7459 | 0.8636 |
\(\underline{\mathbf {0.9654}}\) | 0.7887 |
\((7;64;8)-v0\) | 0.9367 | 0.8811 | 0.7652 | 0.8755 |
\(\underline{\mathbf {0.9654}}\) | 0.8103 |
\((5;32;16)-v0\) | 0.9379 | 0.8641 | 0.7399 | 0.8599 |
\(\underline{\mathbf {0.9652}}\) | 0.7821 |
\((5;64;16)-v0\) |
\(\mathbf {0.9402}\) |
\(\mathbf {0.9118}\) |
\(\mathbf {0.7944}\) |
\(\mathbf {0.8993}\) | 0.9091 |
\(\mathbf {0.9144}\) |
\((7;64;16)-v0\) | 0.9359 | 0.8739 | 0.7543 | 0.8689 |
\(\underline{\mathbf {0.9652}}\) | 0.7985 |
\((5;32;8)-v1\) |
\(\mathbf {0.9614}\) | 0.9090 | 0.7926 | 0.8977 | 0.9210 | 0.8973 |
\((5;64;8)-v1\) |
\(\mathbf {0.9585}\) | 0.9053 | 0.7848 | 0.8937 | 0.9190 | 0.8919 |
\((7;64;8)-v1\) | 0.9555 | 0.9185 |
\(\mathbf {0.8121}\) |
\(\mathbf {0.9077}\) |
\(\mathbf {0.9230}\) | 0.9141 |
\((5;32;16)-v1\) | 0.9584 | 0.9170 | 0.8098 | 0.9064 |
\(\mathbf {0.9252}\) | 0.9090 |
\((5;64;16)-v1\) | 0.9567 |
\(\underline{\mathbf {0.9287}}\) |
\(\underline{\mathbf {0.8323}}\) |
\(\underline{\mathbf {0.9179}}\) | 0.9188 |
\(\underline{\mathbf {0.9388}}\) |
\((7;64;16)-v1\) | 0.9566 |
\(\mathbf {0.9187}\) |
\(\mathbf {0.8121}\) |
\(\mathbf {0.9077}\) | 0.9214 |
\(\mathbf {0.9161}\) |
\((5;32;8)-v2\) | 0.9602 |
\(\underline{\mathbf {0.9280}}\) |
\(\underline{\mathbf {0.8311}}\) |
\(\underline{\mathbf {0.9173}}\) | 0.9198 |
\(\underline{\mathbf {0.9364}}\) |
\((5;64;8)-v2\) |
\(\mathbf {0.9645}\) | 0.8912 | 0.7613 | 0.8804 | 0.9245 | 0.8601 |
\((7;64;8)-v2\) | 0.9576 | 0.8908 | 0.7605 | 0.8800 | 0.9241 | 0.8598 |
\((5;32;16)-v2\) | 0.9598 | 0.9203 | 0.8168 | 0.9099 |
\(\mathbf {0.9271}\) | 0.9136 |
\((5;64;16)-v2\) |
\(\mathbf {0.9619}\) |
\(\mathbf {0.9271}\) |
\(\mathbf {0.8310}\) |
\(\mathbf {0.9171}\) |
\(\mathbf {0.9278}\) | 0.9264 |
\((7;64;16)-v2\) | 0.9595 | 0.9258 | 0.8275 | 0.9154 | 0.9247 |
\(\mathbf {0.9269}\) |
XGBoost |
\(\underline{0.9998}\) | 0.8227 | 0.6885 | 0.8250 | 0.8456 | 0.7134 |
Random Forest |
\(\underline{0.9996}\) | 0.7870 | 0.6453 | 0.7960 | 0.8278 | 0.6619 |
Model name | AVF1 | ATF1 | ATMCC | ATA | ATP | ATR |
---|---|---|---|---|---|---|
\((5;32;8)-v0\) |
\(\mathbf {0.9332}\) | 0.8934 | 0.7692 | 0.8834 | 0.9299 | 0.8610 |
\((5;64;8)-v0\) | 0.9033 | 0.8762 | 0.6952 | 0.8524 | 0.8980 | 0.8720 |
\((7;64;8)-v0\) | 0.9315 | 0.8872 | 0.7642 | 0.8788 |
\(\underline{\mathbf {0.9408}}\) | 0.8410 |
\((5;32;16)-v0\) |
\(\mathbf {0.9321}\) |
\(\mathbf {0.8993}\) |
\(\mathbf {0.7786}\) |
\(\mathbf {0.8888}\) | 0.9238 |
\(\mathbf {0.8782}\) |
\((5;64;16)-v0\) | 0.9294 |
\(\mathbf {0.8999}\) |
\(\mathbf {0.7764}\) |
\(\mathbf {0.8887}\) | 0.9196 |
\(\mathbf {0.8820}\) |
\((7;64;16)-v0\) | 0.9315 | 0.8902 | 0.7677 | 0.8813 |
\(\underline{\mathbf {0.9381}}\) | 0.8485 |
\((5;32;8)-v1\) | 0.9486 | 0.9120 | 0.7995 | 0.9008 | 0.9184 | 0.9066 |
\((5;64;8)-v1\) | 0.9508 |
\(\mathbf {0.9224}\) |
\(\mathbf {0.8193}\) |
\(\mathbf {0.9114}\) | 0.9185 |
\(\underline{\mathbf {0.9266}}\) |
\((7;64;8)-v1\) | 0.9489 | 0.9085 | 0.7928 | 0.8974 |
\(\mathbf {0.9200}\) | 0.8979 |
\((5;32;16)-v1\) |
\(\mathbf {0.9511}\) |
\(\mathbf {0.9218}\) |
\(\mathbf {0.8182}\) |
\(\mathbf {0.9108}\) | 0.9191 |
\(\mathbf {0.9248}\) |
\((5;64;16)-v1\) |
\(\mathbf {0.9521}\) | 0.9176 | 0.8124 | 0.9071 |
\(\mathbf {0.9203}\) | 0.9164 |
\((7;64;16)-v1\) | 0.9470 | 0.9161 | 0.8065 | 0.9049 | 0.9187 | 0.9138 |
\((5;32;8)-v2\) | 0.9537 | 0.9171 | 0.8096 | 0.9062 | 0.9204 | 0.9143 |
\((5;64;8)-v2\) |
\(\mathbf {0.9566}\) | 0.9171 | 0.8090 | 0.9060 | 0.9198 | 0.9147 |
\((7;64;8)-v2\) | 0.9515 | 0.9145 | 0.8054 | 0.9037 | 0.9197 | 0.9104 |
\((5;32;16)-v2\) | 0.9536 |
\(\underline{\mathbf {0.9240}}\) |
\(\underline{\mathbf {0.8229}}\) |
\(\underline{\mathbf {0.9132}}\) | 0.9208 |
\(\underline{\mathbf {0.9273}}\) |
\((5;64;16)-v2\) |
\(\mathbf {0.9582}\) | 0.9218 | 0.8186 | 0.9110 |
\(\mathbf {0.9217}\) | 0.9220 |
\((7;64;16)-v2\) | 0.9551 |
\(\underline{\mathbf {0.9236}}\) |
\(\underline{\mathbf {0.8231}}\) |
\(\underline{\mathbf {0.9130}}\) |
\(\mathbf {0.9222}\) |
\(\mathbf {0.9254}\) |
XGBoost |
\(\underline{0.9996}\) | 0.8320 | 0.7010 | 0.8330 | 0.8510 | 0.7277 |
Random Forest |
\(\underline{0.9991}\) | 0.7701 | 0.6257 | 0.7829 | 0.8199 | 0.6392 |
Model name | HTRU2 dataset | NSL-KDD dataset | ||
---|---|---|---|---|
TT [s] | IT [s] | TT [s] | IT [s] | |
\((5;32;8)-v0\) | 28.77 | 0.17 | 82.81 | 2.93 |
\((5;64;8)-v0\) | 39.59 | 0.18 | 82.40 | 2.93 |
\((7;64;8)-v0\) | 42.13 | 0.19 | 78.10 | 3.00 |
\((5;32;16)-v0\) | 34.55 | 0.18 | 61.79 | 2.90 |
\((5;64;16)-v0\) | 39.98 | 0.18 | 29.08 | 2.98 |
\((7;64;16)-v0\) | 42.24 | 0.19 | 78.86 | 2.98 |
\((5;32;8)-v1\) | 149.06 | 0.65 | 235.50 | 7.10 |
\((5;64;8)-v1\) | 148.34 | 0.77 | 207.95 | 7.60 |
\((7;64;8)-v1\) | 210.14 | 0.70 | 267.44 | 8.39 |
\((5;32;16)-v1\) | 159.44 | 0.65 | 259.46 | 9.15 |
\((5;64;16)-v1\) | 232.14 | 0.79 | 153.71 | 9.83 |
\((7;64;16)-v1\) | 229.34 | 0.67 | 89.62 | 9.82 |
\((5;32;8)-v2\) | 112.83 | 0.40 | 268.32 | 5.91 |
\((5;64;8)-v2\) | 153.01 | 0.53 | 276.47 | 6.10 |
\((7;64;8)-v2\) | 134.90 | 0.49 | 311.50 | 6.69 |
\((5;32;16)-v2\) | 101.21 | 0.41 | 256.42 | 5.99 |
\((5;64;16)-v2\) | 136.19 | 0.50 | 291.86 | 6.67 |
\((7;64;16)-v2\) | 134.83 | 0.47 | 317.77 | 6.82 |
XGBoost | 133.54 | 0.03 | 273.00 | 0.17 |
Random Forest | 187.02 | 0.37 | 320.45 | 2.65 |