Skip to main content

2018 | OriginalPaper | Buchkapitel

On the Computational Modeling of Lipid Bilayers Using Thin-Shell Theory

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter discusses the computational modeling of lipid bilayers based on the nonlinear theory of thin shells. Several computational challenges are identified and various theoretical and computational ingredients are proposed in order to counter them. In particular, \(C^1\)-continuous, NURBS-based, LBB-conforming surface finite element discretizations are discussed. The constitutive behavior of the bilayer is based on in-plane viscosity and (near) area-incompressibility combined with the Helfrich bending model. Various shear stabilization techniques are proposed for quasi-static computations. All ingredients are formulated in the curvilinear coordinate system characterizing general surface parameterizations. The consistent linearization of the formulation is presented, and several numerical examples are shown.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Note that \(\det [c^{\alpha }_\beta ]=\det [c^\alpha _{~\beta }]=\det [c^{~\alpha }_\beta ]\) even if \(c^\alpha _{~\beta }\ne c^{~\alpha }_\beta \).
 
2
For an extension to changing mass, e.g., due to protein binding, see Sahu et al. (2017).
 
3
Per current length of the cut face.
 
4
Since \(\sigma ^{\alpha \beta }_\mathrm {visc}\,\dot{a}_{\alpha \beta }=4\eta \,\varvec{d}:\varvec{d}=4\eta \Vert \varvec{d}\Vert ^2>0\) due to (65) and (66).
 
5
Strictly, \(G^1\)-continuity (i.e., continuity in \({\varvec{n}}\) but not necessary in \({\varvec{a}}_\alpha \)) is sufficient.
 
6
Named after Ladyzhenskaya, Babuška, and Brezzi.
 
7
Assuming that the tube is sufficiently long and can be idealized by a perfect cylinder.
 
8
The shear stresses are now physical and need to be applied both in-plane and out-of-plane.
 
Literatur
Zurück zum Zitat A. Agrawal, D. Steigmann, Modeling protein-mediated morphology in biomembranes. Biomech. Model. Mechanobiol. 8(5), 371–379 (2009)CrossRef A. Agrawal, D. Steigmann, Modeling protein-mediated morphology in biomembranes. Biomech. Model. Mechanobiol. 8(5), 371–379 (2009)CrossRef
Zurück zum Zitat E. Baesu, R.E. Rudd, J. Belak, M. McElfresh, Continuum modeling of cell membranes. Int. J. Non-lin. Mech. 39, 369–377 (2004)CrossRefMATH E. Baesu, R.E. Rudd, J. Belak, M. McElfresh, Continuum modeling of cell membranes. Int. J. Non-lin. Mech. 39, 369–377 (2004)CrossRefMATH
Zurück zum Zitat K.-J. Bathe, Finite Element Procedures (Prentice-Hall, New Jersey, 1996)MATH K.-J. Bathe, Finite Element Procedures (Prentice-Hall, New Jersey, 1996)MATH
Zurück zum Zitat K.-J. Bathe, The inf-sup condition and its evaluation for mixed finite element methods. Comput. Struct. 79, 243–252 (2001)MathSciNetCrossRef K.-J. Bathe, The inf-sup condition and its evaluation for mixed finite element methods. Comput. Struct. 79, 243–252 (2001)MathSciNetCrossRef
Zurück zum Zitat D.J. Benson, Y. Bazilevs, M.-C. Hsu, T.J.R. Hughes, A large deformation, rotation-free, isogeometric shell. Comput. Methods Appl. Mech. Engrg. 200(13–16), 1367–1378 (2011)MathSciNetCrossRefMATH D.J. Benson, Y. Bazilevs, M.-C. Hsu, T.J.R. Hughes, A large deformation, rotation-free, isogeometric shell. Comput. Methods Appl. Mech. Engrg. 200(13–16), 1367–1378 (2011)MathSciNetCrossRefMATH
Zurück zum Zitat M.J. Borden, M.A. Scott, J.A. Evans, T.J.R. Hughes, Isogeometric finite element data structures based on Bezier extraction of NURBS. Int. J. Numer. Meth. Engng. 87, 15–47 (2011)CrossRefMATH M.J. Borden, M.A. Scott, J.A. Evans, T.J.R. Hughes, Isogeometric finite element data structures based on Bezier extraction of NURBS. Int. J. Numer. Meth. Engng. 87, 15–47 (2011)CrossRefMATH
Zurück zum Zitat P.B. Canham, The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. J. Theoret. Biol. 26, 61–81 (1970)CrossRef P.B. Canham, The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. J. Theoret. Biol. 26, 61–81 (1970)CrossRef
Zurück zum Zitat F. Cirak, M. Ortiz, Fully C\(^1\)-conforming subdivision elements for finite element-deformation thin-shell analysis. Int. J. Numer. Meth. Engng 51, 813–833 (2001)CrossRefMATH F. Cirak, M. Ortiz, Fully C\(^1\)-conforming subdivision elements for finite element-deformation thin-shell analysis. Int. J. Numer. Meth. Engng 51, 813–833 (2001)CrossRefMATH
Zurück zum Zitat B.D. Coleman, W. Noll, The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Ration. Mech. Anal. 13, 167–178 (1964)MathSciNetCrossRefMATH B.D. Coleman, W. Noll, The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Ration. Mech. Anal. 13, 167–178 (1964)MathSciNetCrossRefMATH
Zurück zum Zitat C.J. Corbett, Isogeometric Finite Element Enrichment for Problems Dominated by Surface Effects. Ph.D. thesis, RWTH Aachen University, Aachen, Germany (2016) C.J. Corbett, Isogeometric Finite Element Enrichment for Problems Dominated by Surface Effects. Ph.D. thesis, RWTH Aachen University, Aachen, Germany (2016)
Zurück zum Zitat J.A. Cottrell, T.J.R. Hughes, Y. Bazilevs, Isogeometric Analysis (Wiley, Chichester, 2009)CrossRefMATH J.A. Cottrell, T.J.R. Hughes, Y. Bazilevs, Isogeometric Analysis (Wiley, Chichester, 2009)CrossRefMATH
Zurück zum Zitat D. Cuvelier, I. Derényi, P. Bassereau, P. Nassoy, Coalescence of membrane tethers: experiments, theory, and applications. Biophys. J. 88, 2714–2726 (2005)CrossRef D. Cuvelier, I. Derényi, P. Bassereau, P. Nassoy, Coalescence of membrane tethers: experiments, theory, and applications. Biophys. J. 88, 2714–2726 (2005)CrossRef
Zurück zum Zitat M. Dao, C.T. Lim, S. Suresh, Mechanics of the human red blood cell deformed by optical tweezers. J. Mech. Phys. Solids 51, 2259–2280 (2003)CrossRef M. Dao, C.T. Lim, S. Suresh, Mechanics of the human red blood cell deformed by optical tweezers. J. Mech. Phys. Solids 51, 2259–2280 (2003)CrossRef
Zurück zum Zitat I. Derényi, F. Jülicher, J. Prost, Formation and interaction of membrane tubes. Phy. Rev. Lett. 88(23), 238101 (2002)CrossRef I. Derényi, F. Jülicher, J. Prost, Formation and interaction of membrane tubes. Phy. Rev. Lett. 88(23), 238101 (2002)CrossRef
Zurück zum Zitat Q. Du, X.Q. Wang, Convergence of numerical approximations to a phase field bending elasticity model of membrane deformations. Int. J. Numer. Anal. Model. 4(3–4), 441–459 (2007)MathSciNetMATH Q. Du, X.Q. Wang, Convergence of numerical approximations to a phase field bending elasticity model of membrane deformations. Int. J. Numer. Anal. Model. 4(3–4), 441–459 (2007)MathSciNetMATH
Zurück zum Zitat N.T. Dung, G.N. Wells, Geometrically nonlinear formulation for thin shells without rotation degrees of freedom. Comput. Methods Appl. Mech. Engrg. 197, 2778–2788 (2008)MathSciNetCrossRefMATH N.T. Dung, G.N. Wells, Geometrically nonlinear formulation for thin shells without rotation degrees of freedom. Comput. Methods Appl. Mech. Engrg. 197, 2778–2788 (2008)MathSciNetCrossRefMATH
Zurück zum Zitat T.X. Duong, F. Roohbakhshan, R.A. Sauer, A new rotation-free isogeometric thin shell formulation and a corresponding continuity constraint for patch boundaries. Comput. Methods Appl. Mech. Engrg. 316, 43–83 (2017)MathSciNetCrossRef T.X. Duong, F. Roohbakhshan, R.A. Sauer, A new rotation-free isogeometric thin shell formulation and a corresponding continuity constraint for patch boundaries. Comput. Methods Appl. Mech. Engrg. 316, 43–83 (2017)MathSciNetCrossRef
Zurück zum Zitat C.M. Elliott, B. Stinner, Modeling and computation of two phase geometric biomembranes using surface finite elements. J. Comp. Phys. 229(18), 6585–6612 (2010)MathSciNetCrossRefMATH C.M. Elliott, B. Stinner, Modeling and computation of two phase geometric biomembranes using surface finite elements. J. Comp. Phys. 229(18), 6585–6612 (2010)MathSciNetCrossRefMATH
Zurück zum Zitat F.G. Flores, C.F. Estrada, A rotation-free thin shell quadrilateral. Comput. Methods Appl. Mech. Engrg. 196(25–28), 2631–2646 (2007)CrossRefMATH F.G. Flores, C.F. Estrada, A rotation-free thin shell quadrilateral. Comput. Methods Appl. Mech. Engrg. 196(25–28), 2631–2646 (2007)CrossRefMATH
Zurück zum Zitat R. Gu, X. Wang, M. Gunzburger, Simulating vesicle-substrate adhesion using two phase field functions. J. Comput. Phys. 275, 626–641 (2014)MathSciNetCrossRefMATH R. Gu, X. Wang, M. Gunzburger, Simulating vesicle-substrate adhesion using two phase field functions. J. Comput. Phys. 275, 626–641 (2014)MathSciNetCrossRefMATH
Zurück zum Zitat W. Helfrich, Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforsch. 28c, 693–703 (1973) W. Helfrich, Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforsch. 28c, 693–703 (1973)
Zurück zum Zitat T.J.R. Hughes, J.A. Cottrell, Y. Bazilevs, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Engrg. 194, 4135–4195 (2005)MathSciNetCrossRefMATH T.J.R. Hughes, J.A. Cottrell, Y. Bazilevs, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Engrg. 194, 4135–4195 (2005)MathSciNetCrossRefMATH
Zurück zum Zitat M. Jarić, U. Seifert, W. Wirtz, M. Wortis, Vesicular instabilities: The prolate-to-oblate transition and other shape instabilities of fluid bilayer membranes. Phys. Rev. E 52(6), 6623–6634 (1995)CrossRef M. Jarić, U. Seifert, W. Wirtz, M. Wortis, Vesicular instabilities: The prolate-to-oblate transition and other shape instabilities of fluid bilayer membranes. Phys. Rev. E 52(6), 6623–6634 (1995)CrossRef
Zurück zum Zitat Y. Jie, L. Quanhui, L. Jixing, O.-Y. Zhong-Can, Numerical observation of nonaxisymmetric vesicles in fluid membranes. Phys. Rev. E 58(4), 4730–4736 (1998)CrossRef Y. Jie, L. Quanhui, L. Jixing, O.-Y. Zhong-Can, Numerical observation of nonaxisymmetric vesicles in fluid membranes. Phys. Rev. E 58(4), 4730–4736 (1998)CrossRef
Zurück zum Zitat K.A. Johannessen, T. Kvamsdal, T. Dokken, Isogeometric analysis using LRB-splines. Comput. Methods Appl. Mech. Engng. 269, 471–514 (2014)CrossRefMATH K.A. Johannessen, T. Kvamsdal, T. Dokken, Isogeometric analysis using LRB-splines. Comput. Methods Appl. Mech. Engng. 269, 471–514 (2014)CrossRefMATH
Zurück zum Zitat O. Kahraman, N. Stoop, M.M. Müller, Fluid membrane vesicles in confinement. New J. Phys. 14, 095021 (2012)CrossRef O. Kahraman, N. Stoop, M.M. Müller, Fluid membrane vesicles in confinement. New J. Phys. 14, 095021 (2012)CrossRef
Zurück zum Zitat J. Kiendl, K.-U. Bletzinger, J. Linhard, R. Wüchner, Isogeometric shell analysis with Kirchhoff-Love elements. Comput. Methods Appl. Mech. Engrg. 198, 3902–3914 (2009)MathSciNetCrossRefMATH J. Kiendl, K.-U. Bletzinger, J. Linhard, R. Wüchner, Isogeometric shell analysis with Kirchhoff-Love elements. Comput. Methods Appl. Mech. Engrg. 198, 3902–3914 (2009)MathSciNetCrossRefMATH
Zurück zum Zitat J. Kiendl, Y. Bazilevs, M.-C. Hsu, R. Wüchner, K.-U. Bletzinger, The bending strip method for isogeometric analysis of Kirchhoff-Love shell structures comprised of multiple patches. Comput. Methods Appl. Mech. Engrg. 199(37–40), 2403–2416 (2010)MathSciNetCrossRefMATH J. Kiendl, Y. Bazilevs, M.-C. Hsu, R. Wüchner, K.-U. Bletzinger, The bending strip method for isogeometric analysis of Kirchhoff-Love shell structures comprised of multiple patches. Comput. Methods Appl. Mech. Engrg. 199(37–40), 2403–2416 (2010)MathSciNetCrossRefMATH
Zurück zum Zitat J. Kiendl, M.-C. Hsu, M.C. Wu, A. Reali, Isogeometric Kirchhoff-Love shell formulations for general hyperelastic materials. Comput. Methods Appl. Mech. Engrg. 291, 280–303 (2015)MathSciNetCrossRef J. Kiendl, M.-C. Hsu, M.C. Wu, A. Reali, Isogeometric Kirchhoff-Love shell formulations for general hyperelastic materials. Comput. Methods Appl. Mech. Engrg. 291, 280–303 (2015)MathSciNetCrossRef
Zurück zum Zitat T. Kloeppel, W.A. Wall, A novel two-layer, coupled finite element approach for modeling the nonlinear elastic and viscoelastic behavior of human erythrocytes. Biomech. Model. Mechanobiol. 10(4), 445–459 (2011)CrossRef T. Kloeppel, W.A. Wall, A novel two-layer, coupled finite element approach for modeling the nonlinear elastic and viscoelastic behavior of human erythrocytes. Biomech. Model. Mechanobiol. 10(4), 445–459 (2011)CrossRef
Zurück zum Zitat M.M. Kozlov, F. Campelo, N. Liska, L.V. Chernomordik, S.J. Marrink, H.T. McMahon, Mechanisms shaping cell membranes. Curr. Opin. Cell Biol. 29, 53–60 (2014)CrossRef M.M. Kozlov, F. Campelo, N. Liska, L.V. Chernomordik, S.J. Marrink, H.T. McMahon, Mechanisms shaping cell membranes. Curr. Opin. Cell Biol. 29, 53–60 (2014)CrossRef
Zurück zum Zitat C. Lau, W.E. Brownell, A.A. Spector, Internal forces, tension and energy density in tethered cellular membranes. J. Biomech. 45(7), 1328–1331 (2012)CrossRef C. Lau, W.E. Brownell, A.A. Spector, Internal forces, tension and energy density in tethered cellular membranes. J. Biomech. 45(7), 1328–1331 (2012)CrossRef
Zurück zum Zitat H. Li, G. Lykotrafitis, Two-component coarse-grained molecular-dynamics model for the human erythrocyte membrane. Biophys. J. 102(1), 75–84 (2012)CrossRef H. Li, G. Lykotrafitis, Two-component coarse-grained molecular-dynamics model for the human erythrocyte membrane. Biophys. J. 102(1), 75–84 (2012)CrossRef
Zurück zum Zitat A. Libai, J.G. Simmonds, The Nonlinear Theory of Elastic Shells, 2nd edn. (Cambridge University Press, Cambridge, 1998)CrossRefMATH A. Libai, J.G. Simmonds, The Nonlinear Theory of Elastic Shells, 2nd edn. (Cambridge University Press, Cambridge, 1998)CrossRefMATH
Zurück zum Zitat J. Linhard, R. Wüchner, K.-U. Bletzinger, “Upgrading” membranes to shells - The CEG rotation free element and its application in structural anaylsis. Finite Elem. Anal. Des. 44(1–2), 63–74 (2007) J. Linhard, R. Wüchner, K.-U. Bletzinger, “Upgrading” membranes to shells - The CEG rotation free element and its application in structural anaylsis. Finite Elem. Anal. Des. 44(1–2), 63–74 (2007)
Zurück zum Zitat R. Lipowsky, Spontaneous tabulation of membranes and vesicles reveals membrane tension generated by spontaneous curvature. Faraday Discuss. 161, 305–331 (2013)CrossRef R. Lipowsky, Spontaneous tabulation of membranes and vesicles reveals membrane tension generated by spontaneous curvature. Faraday Discuss. 161, 305–331 (2013)CrossRef
Zurück zum Zitat T.V. Loc, T.H. Chien, N.X. Hung, On two-field nurbs-based isogeometric formulation for incompressible media problems. Vietnam J. Mech. 35, 225–237 (2013)CrossRef T.V. Loc, T.H. Chien, N.X. Hung, On two-field nurbs-based isogeometric formulation for incompressible media problems. Vietnam J. Mech. 35, 225–237 (2013)CrossRef
Zurück zum Zitat L. Ma, W.S. Klug, Viscous regularization and r-adaptive meshing for finite element analysis of lipid membrane mechanics. J. Comput. Phys. 227, 5816–5835 (2008)MathSciNetCrossRefMATH L. Ma, W.S. Klug, Viscous regularization and r-adaptive meshing for finite element analysis of lipid membrane mechanics. J. Comput. Phys. 227, 5816–5835 (2008)MathSciNetCrossRefMATH
Zurück zum Zitat H.T. McMahon, J.L. Gallop, Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438(7068), 590–596 (2005)CrossRef H.T. McMahon, J.L. Gallop, Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438(7068), 590–596 (2005)CrossRef
Zurück zum Zitat P.M. Naghdi, Finite deformation of elastic rods and shells, in Proceedings of the IUTAM Symposium on Finite Elasticity, ed. by D.E. Carlson, R.T. Shields (Martinus Nijhoff Publishers, The Hague, 1982), pp. 47–103 P.M. Naghdi, Finite deformation of elastic rods and shells, in Proceedings of the IUTAM Symposium on Finite Elasticity, ed. by D.E. Carlson, R.T. Shields (Martinus Nijhoff Publishers, The Hague, 1982), pp. 47–103
Zurück zum Zitat N. Nguyen-Thanh, J. Kiendl, H. Nguyen-Xuan, R. Wüchner, K.-U. Bletzinger, Y. Bazilevs, T. Rabczuk, Rotation free isogeometric thin shell analysis using pht-splines. Comput. Methods Appl. Mech. Engrg. 200(47–48), 3410–3424 (2011)MathSciNetCrossRefMATH N. Nguyen-Thanh, J. Kiendl, H. Nguyen-Xuan, R. Wüchner, K.-U. Bletzinger, Y. Bazilevs, T. Rabczuk, Rotation free isogeometric thin shell analysis using pht-splines. Comput. Methods Appl. Mech. Engrg. 200(47–48), 3410–3424 (2011)MathSciNetCrossRefMATH
Zurück zum Zitat Z. Peng, R.J. Asaro, Q. Zhu, Multiscale simulation of erythrocyte membranes. Phys. Rev. E 81, 031904 (2010)CrossRef Z. Peng, R.J. Asaro, Q. Zhu, Multiscale simulation of erythrocyte membranes. Phys. Rev. E 81, 031904 (2010)CrossRef
Zurück zum Zitat W. Pietraszkiewicz, Geometrically nonlinear theories of thin elastic shells. Adv. Mech. 12(1), 51–130 (1989)MathSciNet W. Pietraszkiewicz, Geometrically nonlinear theories of thin elastic shells. Adv. Mech. 12(1), 51–130 (1989)MathSciNet
Zurück zum Zitat M. Rahimi, M. Arroyo, Shape dynamics, lipid hydrodynamics, and the complex viscoelasticity of bilayer membranes. Phys. Rev. E 86, 011932 (2012)CrossRef M. Rahimi, M. Arroyo, Shape dynamics, lipid hydrodynamics, and the complex viscoelasticity of bilayer membranes. Phys. Rev. E 86, 011932 (2012)CrossRef
Zurück zum Zitat N. Ramakrishnan, P.B.S. Kumar, J.H. Ipsen, Monte carlo simulations of fluid vesicles with in-plane orientational ordering. Phys. Rev. E 81, 041922 (2010)CrossRef N. Ramakrishnan, P.B.S. Kumar, J.H. Ipsen, Monte carlo simulations of fluid vesicles with in-plane orientational ordering. Phys. Rev. E 81, 041922 (2010)CrossRef
Zurück zum Zitat P. Rangamani, A. Agrawal, K.K. Mandadapu, G. Oster, D.J. Steigmann, Interaction between surface shape and intra-surface viscous flow on lipid membranes. Biomech. Model. Mechanobiol. 12(4), 833–845 (2013)CrossRef P. Rangamani, A. Agrawal, K.K. Mandadapu, G. Oster, D.J. Steigmann, Interaction between surface shape and intra-surface viscous flow on lipid membranes. Biomech. Model. Mechanobiol. 12(4), 833–845 (2013)CrossRef
Zurück zum Zitat P. Rangamani, K.K. Mandadapu, G. Oster, Protein-induced membrane curvature alters local membrane tension. Biophys. J. 107(3), 751–762 (2014)CrossRef P. Rangamani, K.K. Mandadapu, G. Oster, Protein-induced membrane curvature alters local membrane tension. Biophys. J. 107(3), 751–762 (2014)CrossRef
Zurück zum Zitat R. Rangarajan, H. Gao, A finite element method to compute three-dimensional equilibrium configurations of fluid membranes: Optimal parameterization, variational formulation and applications. J. Comput. Phys. 297, 266–294 (2015)MathSciNetCrossRefMATH R. Rangarajan, H. Gao, A finite element method to compute three-dimensional equilibrium configurations of fluid membranes: Optimal parameterization, variational formulation and applications. J. Comput. Phys. 297, 266–294 (2015)MathSciNetCrossRefMATH
Zurück zum Zitat J.E. Rim, P.K. Purohit, W.S. Klug, Mechanical collapse of confined fluid membrane vesicles. Biomech. Model. Mechanobio. 13(6), 1277–1288 (2014)CrossRef J.E. Rim, P.K. Purohit, W.S. Klug, Mechanical collapse of confined fluid membrane vesicles. Biomech. Model. Mechanobio. 13(6), 1277–1288 (2014)CrossRef
Zurück zum Zitat A. Rosolen, C. Peco, M. Arroyo, An adaptive meshfree method for phase-field models of biomembranes. Part I: approximation with maximum-entropy basis functions. J. Comput. Phys. 249, 303–319 (2013) A. Rosolen, C. Peco, M. Arroyo, An adaptive meshfree method for phase-field models of biomembranes. Part I: approximation with maximum-entropy basis functions. J. Comput. Phys. 249, 303–319 (2013)
Zurück zum Zitat D. Salac, M. Miksis, A level set projection model of lipid vesicles in general flows. J. Comput. Phys. 230(22), 8192–8215 (2011)MathSciNetCrossRefMATH D. Salac, M. Miksis, A level set projection model of lipid vesicles in general flows. J. Comput. Phys. 230(22), 8192–8215 (2011)MathSciNetCrossRefMATH
Zurück zum Zitat R.A. Sauer, Stabilized finite element formulations for liquid membranes and their application to droplet contact. Int. J. Numer. Meth. Fluids 75(7), 519–545 (2014)MathSciNetCrossRef R.A. Sauer, Stabilized finite element formulations for liquid membranes and their application to droplet contact. Int. J. Numer. Meth. Fluids 75(7), 519–545 (2014)MathSciNetCrossRef
Zurück zum Zitat R.A. Sauer, L. De Lorenzis, A computational contact formulation based on surface potentials. Comput. Methods Appl. Mech. Engrg. 253, 369–395 (2013)MathSciNetCrossRefMATH R.A. Sauer, L. De Lorenzis, A computational contact formulation based on surface potentials. Comput. Methods Appl. Mech. Engrg. 253, 369–395 (2013)MathSciNetCrossRefMATH
Zurück zum Zitat R.A. Sauer, L. De Lorenzis, An unbiased computational contact formulation for 3D friction. Int. J. Numer. Meth. Engrg. 101(4), 251–280 (2015)MathSciNetCrossRefMATH R.A. Sauer, L. De Lorenzis, An unbiased computational contact formulation for 3D friction. Int. J. Numer. Meth. Engrg. 101(4), 251–280 (2015)MathSciNetCrossRefMATH
Zurück zum Zitat R.A. Sauer, T.X. Duong, On the theoretical foundations of solid and liquid shells. Math. Mech. Solids. 22(3), 343–371 (2017)CrossRef R.A. Sauer, T.X. Duong, On the theoretical foundations of solid and liquid shells. Math. Mech. Solids. 22(3), 343–371 (2017)CrossRef
Zurück zum Zitat R.A. Sauer, T.X. Duong, C.J. Corbett, A computational formulation for constrained solid and liquid membranes considering isogeometric finite elements. Comput. Methods Appl. Mech. Engrg. 271, 48–68 (2014)MathSciNetCrossRefMATH R.A. Sauer, T.X. Duong, C.J. Corbett, A computational formulation for constrained solid and liquid membranes considering isogeometric finite elements. Comput. Methods Appl. Mech. Engrg. 271, 48–68 (2014)MathSciNetCrossRefMATH
Zurück zum Zitat R.A. Sauer, T.X. Duong, K.K. Mandadapu, D.J. Steigmann, A stabilized finite element formulation for liquid shells and its application to lipid bilayers. J. Comput. Phys. 330, 436–466 (2017)MathSciNetCrossRef R.A. Sauer, T.X. Duong, K.K. Mandadapu, D.J. Steigmann, A stabilized finite element formulation for liquid shells and its application to lipid bilayers. J. Comput. Phys. 330, 436–466 (2017)MathSciNetCrossRef
Zurück zum Zitat M.A. Scott, M.J. Borden, C.V. Verhoosel, T.W. Sederberg, T.J.R. Hughes, Isogeometric finite element data structures based on Bézier extraction of T-splines. Int. J. Numer. Meth. Engng. 88(2), 126–156 (2011)CrossRefMATH M.A. Scott, M.J. Borden, C.V. Verhoosel, T.W. Sederberg, T.J.R. Hughes, Isogeometric finite element data structures based on Bézier extraction of T-splines. Int. J. Numer. Meth. Engng. 88(2), 126–156 (2011)CrossRefMATH
Zurück zum Zitat Z. Shi, T. Baumgart, Membrane tension and peripheral protein density mediate membrane shape transitions. Nat. commun. 6, 5974 (2015)CrossRef Z. Shi, T. Baumgart, Membrane tension and peripheral protein density mediate membrane shape transitions. Nat. commun. 6, 5974 (2015)CrossRef
Zurück zum Zitat D. Steigmann, E. Baesu, R.E. Rudd, J. Belak, M. McElfresh, On the variational theory of cell-membrane equilibria. Interfaces Free Bound. 5, 357–366 (2003)MathSciNetCrossRefMATH D. Steigmann, E. Baesu, R.E. Rudd, J. Belak, M. McElfresh, On the variational theory of cell-membrane equilibria. Interfaces Free Bound. 5, 357–366 (2003)MathSciNetCrossRefMATH
Zurück zum Zitat I.V. Tasso, G.C. Buscaglia, A finite element method for viscous membranes. Comput. Methods Appl. Mech. Engrg. 255, 226–237 (2013)MathSciNetCrossRefMATH I.V. Tasso, G.C. Buscaglia, A finite element method for viscous membranes. Comput. Methods Appl. Mech. Engrg. 255, 226–237 (2013)MathSciNetCrossRefMATH
Zurück zum Zitat N. Walani, J. Torres, A. Agrawal, Endocytic proteins drive vesicle growth via instability in high membrane tension environment. Proc. Natl. Acad. Sci. 112(12), E1423–E1432 (2015) N. Walani, J. Torres, A. Agrawal, Endocytic proteins drive vesicle growth via instability in high membrane tension environment. Proc. Natl. Acad. Sci. 112(12), E1423–E1432 (2015)
Zurück zum Zitat J. Zimmerberg, M.M. Kozlov, How proteins produce cellular membrane curvature. Nat. Rev. Mol. Cell Biol. 7(1), 9–19 (2006)CrossRef J. Zimmerberg, M.M. Kozlov, How proteins produce cellular membrane curvature. Nat. Rev. Mol. Cell Biol. 7(1), 9–19 (2006)CrossRef
Zurück zum Zitat C. Zimmermann, R.A. Sauer, Adaptive local surface refinement based on LR-NURBS and its application to contact (2017), arXiv:1701.08742 C. Zimmermann, R.A. Sauer, Adaptive local surface refinement based on LR-NURBS and its application to contact (2017), arXiv:​1701.​08742
Metadaten
Titel
On the Computational Modeling of Lipid Bilayers Using Thin-Shell Theory
verfasst von
Roger A. Sauer
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-56348-0_5

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.