Skip to main content
Erschienen in: Mathematics in Computer Science 1/2021

31.03.2020

On the \({ H}^{1}\) Conforming Virtual Element Method for Time Dependent Stokes Equation

verfasst von: Dibyendu Adak, Sundararajan Natarajan

Erschienen in: Mathematics in Computer Science | Ausgabe 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we present a virtual element method for the time-dependent Stokes equation by employing a mixed formulation involving the velocity and the pressure as primitive variables. The velocity is approximated using the \(H^1\) conforming virtual element and the pressure is approximated by the discontinuous piecewise polynomial. In order to approximate the non-stationary part with optimal order of convergence, we need to compute the \(L^2\) projection operator of the full order k. In view of this requirement, we modify the velocity space keeping the same dimension. The virtual space is discrete inf-sup stable for \(k \ge 2\) and non-divergence free. We estimate the optimal order of convergence for the velocity and the pressure.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Adak, D., Natarajan, E., Kumar, S.: Convergence analysis of virtual element methods for semilinear parabolic problems on polygonal meshes. Numer. Methods Partial Differ. Equ. 35(1), 222–245 (2019)MathSciNetCrossRef Adak, D., Natarajan, E., Kumar, S.: Convergence analysis of virtual element methods for semilinear parabolic problems on polygonal meshes. Numer. Methods Partial Differ. Equ. 35(1), 222–245 (2019)MathSciNetCrossRef
2.
Zurück zum Zitat Adak, D., Natarajan, E., Kumar, S.: Virtual element method for semilinear hyperbolic problems on polygonal meshes. Int. J. Comput. Math. 96(5), 971–991 (2019)MathSciNetCrossRef Adak, D., Natarajan, E., Kumar, S.: Virtual element method for semilinear hyperbolic problems on polygonal meshes. Int. J. Comput. Math. 96(5), 971–991 (2019)MathSciNetCrossRef
3.
Zurück zum Zitat Ahmad, B., Alsaedi, A., Brezzi, F., Marini, L.D., Russo, A.: Equivalent projectors for virtual element methods. Comput. Math. Appl. 66(3), 376–391 (2013)MathSciNetCrossRef Ahmad, B., Alsaedi, A., Brezzi, F., Marini, L.D., Russo, A.: Equivalent projectors for virtual element methods. Comput. Math. Appl. 66(3), 376–391 (2013)MathSciNetCrossRef
4.
Zurück zum Zitat Antonietti, P.F., Beirão da Veiga, L., Mora, D., Verani, M.: A stream virtual element formulation of the Stokes problem on polygonal meshes. SIAM J. Numer. Anal. 52(1), 386–404 (2014)MathSciNetCrossRef Antonietti, P.F., Beirão da Veiga, L., Mora, D., Verani, M.: A stream virtual element formulation of the Stokes problem on polygonal meshes. SIAM J. Numer. Anal. 52(1), 386–404 (2014)MathSciNetCrossRef
5.
Zurück zum Zitat Bathe, K.: The inf-sup condition and its evaluation for mixed finite element methods. Comput. Struct. 79, 243–252 (2001)MathSciNetCrossRef Bathe, K.: The inf-sup condition and its evaluation for mixed finite element methods. Comput. Struct. 79, 243–252 (2001)MathSciNetCrossRef
6.
Zurück zum Zitat Beirão da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L., Russo, A.: Basic principles of virtual element methods. Math. Model Methods Appl. Sci. 23(01), 199–214 (2013)MathSciNetCrossRef Beirão da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L., Russo, A.: Basic principles of virtual element methods. Math. Model Methods Appl. Sci. 23(01), 199–214 (2013)MathSciNetCrossRef
7.
Zurück zum Zitat Beirão da Veiga, L., Brezzi, F., Marini, L., Russo, A.: Virtual element method for general second-order elliptic problems on polygonal meshes. Math. Model Methods Appl. Sci. 26(04), 729–750 (2016)MathSciNetCrossRef Beirão da Veiga, L., Brezzi, F., Marini, L., Russo, A.: Virtual element method for general second-order elliptic problems on polygonal meshes. Math. Model Methods Appl. Sci. 26(04), 729–750 (2016)MathSciNetCrossRef
8.
Zurück zum Zitat Beirão da Veiga, L., Brezzi, F., Marini, L.D.: Virtual elements for linear elasticity problems. SIAM J. Numer. Anal. 51(2), 794–812 (2013)MathSciNetCrossRef Beirão da Veiga, L., Brezzi, F., Marini, L.D.: Virtual elements for linear elasticity problems. SIAM J. Numer. Anal. 51(2), 794–812 (2013)MathSciNetCrossRef
9.
Zurück zum Zitat Beirão da Veiga, L., Lovadina, C., Mora, D.: A virtual element method for elastic and inelastic problems on polytope meshes. Comput. Methods Appl. Mech. Eng. 295, 327–346 (2015)MathSciNetCrossRef Beirão da Veiga, L., Lovadina, C., Mora, D.: A virtual element method for elastic and inelastic problems on polytope meshes. Comput. Methods Appl. Mech. Eng. 295, 327–346 (2015)MathSciNetCrossRef
10.
Zurück zum Zitat Beirão da Veiga, L., Lovadina, C., Vacca, G.: Divergence free virtual elements for the Stokes problem on polygonal meshes. ESAIM Math. Model. Numer. 51(2), 509–535 (2017)MathSciNetCrossRef Beirão da Veiga, L., Lovadina, C., Vacca, G.: Divergence free virtual elements for the Stokes problem on polygonal meshes. ESAIM Math. Model. Numer. 51(2), 509–535 (2017)MathSciNetCrossRef
11.
Zurück zum Zitat Benedetto, M.F., Berrone, S., Borio, A., Pieraccini, S., Scialò, S.: Order preserving SUPG stabilization for the virtual element formulation of advection–diffusion problems. Comput. Methods Appl. Mech. Eng. 311, 18–40 (2016)MathSciNetCrossRef Benedetto, M.F., Berrone, S., Borio, A., Pieraccini, S., Scialò, S.: Order preserving SUPG stabilization for the virtual element formulation of advection–diffusion problems. Comput. Methods Appl. Mech. Eng. 311, 18–40 (2016)MathSciNetCrossRef
12.
Zurück zum Zitat Bochev, P.B., Dohrmann, C.R., Gunzburger, M.D.: Stabilization of low-order mixed finite elements for the Stokes equations. SIAM J. Numer. Anal. 44(1), 82–101 (2006)MathSciNetCrossRef Bochev, P.B., Dohrmann, C.R., Gunzburger, M.D.: Stabilization of low-order mixed finite elements for the Stokes equations. SIAM J. Numer. Anal. 44(1), 82–101 (2006)MathSciNetCrossRef
13.
Zurück zum Zitat Boffi, D., Brezzi, F., Fortin, M., et al.: Mixed finite element methods and applications, vol. 44. Springer, Berlin (2013)CrossRef Boffi, D., Brezzi, F., Fortin, M., et al.: Mixed finite element methods and applications, vol. 44. Springer, Berlin (2013)CrossRef
14.
Zurück zum Zitat Brenner, S., Scott, R.: The mathematical theory of finite element methods, vol. 15. Springer, Berlin (2007) Brenner, S., Scott, R.: The mathematical theory of finite element methods, vol. 15. Springer, Berlin (2007)
15.
Zurück zum Zitat Brezzi, F., Bristeau, M.O., Franca, L.P., Mallet, M., Rogé, G.: A relationship between stabilized finite element methods and the Galerkin method with bubble functions. Comput. Methods Appl. Mech. Eng. 96(1), 117–129 (1992)MathSciNetCrossRef Brezzi, F., Bristeau, M.O., Franca, L.P., Mallet, M., Rogé, G.: A relationship between stabilized finite element methods and the Galerkin method with bubble functions. Comput. Methods Appl. Mech. Eng. 96(1), 117–129 (1992)MathSciNetCrossRef
16.
Zurück zum Zitat Brezzi, F., Marini, L.D.: Virtual element methods for plate bending problems. Comput. Methods Appl. Mech. Eng. 253, 455–462 (2013)MathSciNetCrossRef Brezzi, F., Marini, L.D.: Virtual element methods for plate bending problems. Comput. Methods Appl. Mech. Eng. 253, 455–462 (2013)MathSciNetCrossRef
17.
Zurück zum Zitat Brezzi, F., Pitkäranta, J.: On the stabilization of finite element approximations of the Stokes equations. In: Hackbusch, W. (ed.) Efficient solutions of elliptic systems, pp. 11–19. Springer, Berlin (1984)CrossRef Brezzi, F., Pitkäranta, J.: On the stabilization of finite element approximations of the Stokes equations. In: Hackbusch, W. (ed.) Efficient solutions of elliptic systems, pp. 11–19. Springer, Berlin (1984)CrossRef
18.
Zurück zum Zitat Brooks, A.N., Hughes, T.J.: Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 32(1–3), 199–259 (1982)MathSciNetCrossRef Brooks, A.N., Hughes, T.J.: Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 32(1–3), 199–259 (1982)MathSciNetCrossRef
19.
Zurück zum Zitat Cangiani, A., Gyrya, V., Manzini, G.: The nonconforming virtual element method for the Stokes equations. SIAM J. Numer. Anal. 54(6), 3411–3435 (2016)MathSciNetCrossRef Cangiani, A., Gyrya, V., Manzini, G.: The nonconforming virtual element method for the Stokes equations. SIAM J. Numer. Anal. 54(6), 3411–3435 (2016)MathSciNetCrossRef
20.
Zurück zum Zitat Cangiani, A., Manzini, G., Sutton, O.J.: Conforming and nonconforming virtual element methods for elliptic problems. IMA J. Numer. Anal. 37(3), 1317–1354 (2016)MathSciNetMATH Cangiani, A., Manzini, G., Sutton, O.J.: Conforming and nonconforming virtual element methods for elliptic problems. IMA J. Numer. Anal. 37(3), 1317–1354 (2016)MathSciNetMATH
21.
Zurück zum Zitat Douglas, J., Wang, J.P.: An absolutely stabilized finite element method for the Stokes problem. Math. Comput. 52(186), 495–508 (1989)MathSciNetCrossRef Douglas, J., Wang, J.P.: An absolutely stabilized finite element method for the Stokes problem. Math. Comput. 52(186), 495–508 (1989)MathSciNetCrossRef
22.
Zurück zum Zitat Franca, L.P., Hughes, T.J.: Convergence analyses of Galerkin least-squares methods for symmetric advective–diffusive forms of the stokes and incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 105(2), 285–298 (1993)MathSciNetCrossRef Franca, L.P., Hughes, T.J.: Convergence analyses of Galerkin least-squares methods for symmetric advective–diffusive forms of the stokes and incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 105(2), 285–298 (1993)MathSciNetCrossRef
23.
Zurück zum Zitat He, Y., Sun, W.: Stabilized finite element method based on the Crank–Nicolson extrapolation scheme for the time-dependent Navier–Stokes equations. Math. Comput. 76(257), 115–136 (2007)MathSciNetCrossRef He, Y., Sun, W.: Stabilized finite element method based on the Crank–Nicolson extrapolation scheme for the time-dependent Navier–Stokes equations. Math. Comput. 76(257), 115–136 (2007)MathSciNetCrossRef
24.
Zurück zum Zitat Heywood, J.G., Rannacher, R.: Finite element approximation of the nonstationary Navier–Stokes problem. I. Regularity of solutions and second-order error estimates for spatial discretization. SIAM J. Numer. Anal. 19(2), 275–311 (1982)MathSciNetCrossRef Heywood, J.G., Rannacher, R.: Finite element approximation of the nonstationary Navier–Stokes problem. I. Regularity of solutions and second-order error estimates for spatial discretization. SIAM J. Numer. Anal. 19(2), 275–311 (1982)MathSciNetCrossRef
25.
Zurück zum Zitat Heywood, J.G., Rannacher, R.: Finite element approximation of the nonstationary Navier–Stokes problem III. Smoothing property and higher order error estimates for spatial discretization. SIAM J. Numer. Anal. 25(3), 489–512 (1988)MathSciNetCrossRef Heywood, J.G., Rannacher, R.: Finite element approximation of the nonstationary Navier–Stokes problem III. Smoothing property and higher order error estimates for spatial discretization. SIAM J. Numer. Anal. 25(3), 489–512 (1988)MathSciNetCrossRef
26.
Zurück zum Zitat Heywood, J.G., Rannacher, R.: Finite-element approximation of the nonstationary Navier–Stokes problem. Part IV: error analysis for second-order time discretization. SIAM J. Numer. Anal. 27(2), 353–384 (1990)MathSciNetCrossRef Heywood, J.G., Rannacher, R.: Finite-element approximation of the nonstationary Navier–Stokes problem. Part IV: error analysis for second-order time discretization. SIAM J. Numer. Anal. 27(2), 353–384 (1990)MathSciNetCrossRef
27.
Zurück zum Zitat Li, J., He, Y.: A stabilized finite element method based on two local gauss integrations for the Stokes equations. J. Comput. Appl. Math. 214(1), 58–65 (2008)MathSciNetCrossRef Li, J., He, Y.: A stabilized finite element method based on two local gauss integrations for the Stokes equations. J. Comput. Appl. Math. 214(1), 58–65 (2008)MathSciNetCrossRef
28.
Zurück zum Zitat Li, J., He, Y., Chen, Z.: A new stabilized finite element method for the transient Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 197(1), 22–35 (2007)MathSciNetCrossRef Li, J., He, Y., Chen, Z.: A new stabilized finite element method for the transient Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 197(1), 22–35 (2007)MathSciNetCrossRef
29.
Zurück zum Zitat Lipnikov, K., Manzini, G., Shashkov, M.: Mimetic finite difference method. J. Comput. Phys. 257, 1163–1227 (2014)MathSciNetCrossRef Lipnikov, K., Manzini, G., Shashkov, M.: Mimetic finite difference method. J. Comput. Phys. 257, 1163–1227 (2014)MathSciNetCrossRef
30.
Zurück zum Zitat Shang, Y.: New stabilized finite element method for time-dependent incompressible flow problems. Int. J. Numer. Methods Fluids 62(2), 166–187 (2010)MathSciNetMATH Shang, Y.: New stabilized finite element method for time-dependent incompressible flow problems. Int. J. Numer. Methods Fluids 62(2), 166–187 (2010)MathSciNetMATH
31.
Zurück zum Zitat Taylor, C., Hood, P.: A numerical solution of the Navier–Stokes equations using the finite element technique. Comput Fluids 1, 73–100 (1973)MathSciNetCrossRef Taylor, C., Hood, P.: A numerical solution of the Navier–Stokes equations using the finite element technique. Comput Fluids 1, 73–100 (1973)MathSciNetCrossRef
32.
Zurück zum Zitat Vacca, G.: Virtual element methods for hyperbolic problems on polygonal meshes. Comput. Math. Appl. 74, 882–898 (2017)MathSciNetCrossRef Vacca, G.: Virtual element methods for hyperbolic problems on polygonal meshes. Comput. Math. Appl. 74, 882–898 (2017)MathSciNetCrossRef
33.
Zurück zum Zitat Vacca, G.: An \(H^1\)-conforming virtual element for Darcy and Brinkman equations. Math. Models Methods Appl. Sci. 28(01), 159–194 (2018)MathSciNetCrossRef Vacca, G.: An \(H^1\)-conforming virtual element for Darcy and Brinkman equations. Math. Models Methods Appl. Sci. 28(01), 159–194 (2018)MathSciNetCrossRef
34.
Zurück zum Zitat Vacca, G., Beirão da Veiga, L.: Virtual element methods for parabolic problems on polygonal meshes. Numer. Methods Partial Differ. Equ. 31(6), 2110–2134 (2015)MathSciNetCrossRef Vacca, G., Beirão da Veiga, L.: Virtual element methods for parabolic problems on polygonal meshes. Numer. Methods Partial Differ. Equ. 31(6), 2110–2134 (2015)MathSciNetCrossRef
Metadaten
Titel
On the Conforming Virtual Element Method for Time Dependent Stokes Equation
verfasst von
Dibyendu Adak
Sundararajan Natarajan
Publikationsdatum
31.03.2020
Verlag
Springer International Publishing
Erschienen in
Mathematics in Computer Science / Ausgabe 1/2021
Print ISSN: 1661-8270
Elektronische ISSN: 1661-8289
DOI
https://doi.org/10.1007/s11786-020-00473-1

Weitere Artikel der Ausgabe 1/2021

Mathematics in Computer Science 1/2021 Zur Ausgabe