Skip to main content
Erschienen in: Journal of Elasticity 1/2018

28.06.2017

On the Decomposition of the Deformation Gradient in Plasticity

verfasst von: Gianpietro Del Piero

Erschienen in: Journal of Elasticity | Ausgabe 1/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Starting from the premise that the distances between points are the only measurable quantities, plasticity is placed into the more general context of the continua with a two-scale representation of the deformation. The Kröner-Lee multiplicative decomposition of the deformation gradient comes out to be incompatible with the geometry of such continua, while the Clifton multiplicative decomposition is compatible but geometrically irrelevant. On the contrary, an approximation theorem taken from the theory of structured deformations provides a measure-theoretic justification for the additive decomposition. It also leads to a decomposition of the strain energy into the sum of two parts, one for each term of the decomposition of the deformation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
I found no trace of this condition in the literature. As shown in the next sections, ignoring this condition was the origin of the many conflicting opinions about the indifference requirements.
 
2
See e.g. [5, 24, 28].
 
3
Del Piero and Owen [10, 11].
 
4
Noll, [29] Sect. 3 and [30] Sect. 7. Before Noll, the term configuration was used in a vague, informal way. To him is due the distinction between extrinsic configurations, which he called placements, and intrinsic configurations, which he identified with distance functions. In spite of Noll’s precise definitions, the term configuration is still being used in a vague and informal way.
 
5
Typically, the “fixed stars”, or the walls of the laboratory, see [40], Sect. 17.
 
6
For example, a deviation may be a change of the crystal lattice directions in a crystalline solid.
 
7
Though each \(\nabla f_{X_{\emptyset }}\) is the gradient of the corresponding \(f_{X_{\emptyset }}\), \(F\) is not in general a gradient, because \(\nabla f_{X_{\emptyset }}\) is the gradient of different functions \(f_{X_{\emptyset }}\) at different points.
 
8
See Del Piero [9].
 
9
Kröner [18], Lee and Liu [21]. According to the historical outline by Sadik and Yavari [35], the idea of this decomposition goes back to Eckart in 1948, and was developed in the 1950’s by Kondo, Bilby, and Kröner.
 
10
“Ein gedachter Zustand” [18], “a thought experiment” [20].
 
11
In gradient plasticity, which is based on the same two-scale geometry, there are further stress measures, partly energetic and partly dissipative. They are assumed to depend on \(F^{e}\) and \(\nabla F^{e}\) and on \(F^{p}\) and \(\nabla F^{p}\), respectively. See, e.g., Gurtin et al. [15], Sect. 90.
 
12
This describes the phenomena of elastic unloading and elastic reloading, typical of plasticity.
 
13
Nevertheless, once the constitutive equation has been constructed, the pair \((\nabla f,F^{e})\) can be taken as a purely geometric pair of independent variables. Indeed, once this pair is known, \(F^{p}\) and \(T\) follow from (13) and (14), respectively.
 
14
See Truesdell and Noll [40], Sect. 47.
 
15
In [3], Casey and Naghdi pointed out that the symmetry of \(F^{e}\) is not preserved under all arbitrary distance preserving transformations, since the transformed \(F^{e}\) is given by equation (17). This led them to conclude that Lee’s proposal was “unduly restrictive on physical grounds”.
 
16
An attempt in this direction was made by Lubarda [23].
 
17
Here the term configuration is used in the sense of classical continuum mechanics, that is, according to the definition given in Sect. 2.
 
18
Sidoroff [36] and, independently, Green and Naghdi [13]. Both disregarded the fact that, if only the preservation of distances is required, there is no reason for assuming \(\hat{Q}\) constant over the body.
 
19
See Truesdell and Noll [40], Sect. 43.
 
20
This conclusion suggested to consider condition (16)2 not as an indifference requirement, but as a constitutive restriction on materials without preferred material directions, like amorphous materials (Anand and Gurtin [1]) or isotropic-viscoplastic materials (Gurtin and Anand [14]).
 
21
See Truesdell and Noll [40], Sect. 28.
 
22
See Truesdell and Noll [40], Sect. 43.
 
23
See [26] Sect. 8.2, and the papers cited therein.
 
24
“Observers view only the deformed configuration” [14]. That is, they view only the total deformation \(\nabla f\).
 
25
To my knowledge, the first explicit statement of the rule \(F^{p*}=F^{p}\) is due to Šilhavý, who deduced it from general properties of deformation histories for materials with elastic range [37]. It must be said, however, that he did not consider this rule as “the only one possible”. On the contrary, he explicitly mentioned the rule \(F^{p*}=QF^{p}\) as a possible alternative. Relatively recent positions pro and against the full invariance rules can be found in [16] and [15], respectively.
 
26
In [21], [36], [22], [33], [15] Sect. 91.2, respectively.
 
27
Indeed, the full invariance rules (16) state the indifference under all distance-preserving changes of placement, while the no invariance rules (21) state the indifference only under changes of placement within the same configuration. Neither involves the state of the material, which is an array of independent variables, not necessarily geometric (see, e.g., [29]). For an example of different interpretations of the “intermediate configuration”, compare those of Gurtin et al. [15] Sect. 91.2, and of Simo and Hughes [39], Sect. 9.1.2.
 
28
Surprisingly enough, similar conclusions have been reached in the recent paper [34], starting from a very different approach.
 
29
This has been recognized by some authors. See, e.g., Lee [20] and Nemat-Nasser [28]. To consider \(F^{p}\) as an independent geometric variable may lead to misconceptions, as confirmed by the dispute about the indifference of the transformation rules.
 
30
Clifton [5]. See also Nemat-Nasser [28], Owen [31], Del Piero and Owen [10], Lubarda [24].
 
31
See [31] and [10].
 
32
Both decompositions “are formal, and their practical usefulness remains to be established” [28].
 
33
For a more general setting in the space \(SBV\) of simple functions with bounded variation see Choksi and Fonseca [4].
 
34
Additive decompositions in finite plasticity were proposed by Green and Naghdi [12] and by Nemat-Nasser [28]. Their formal equivalence to the multiplicative decompositions of Kröner-Lee and of Clifton was shown in [10].
 
35
Therefore, (32) is the Radon-Nikodým decomposition of this measure into an absolutely continuous and a singular part, with the particularity that the singular part also has a volume density. For further details see [4], and for some examples see [8], Sect. 4.3.
 
36
Green and Naghdi [12].
 
37
Choksi and Fonseca [4].
 
38
In [4], the \(SBV\) functional setting and a notion of convergence weaker than (27) are assumed. In this broader functional setting, the energies of the approximating sequences to a given structured deformation need not converge to the same limit. This is the reason for taking the relaxed energy (34) as the energy of a structured deformation.
 
39
In the proof, the functions \(f\) and \(F\) were supposed to be piecewise continuously differentiable and piecewise continuous, respectively, as assumed in the original paper [10]. The energy densities \(\varphi \) and \(\theta \) were supposed to be continuous, and \(\theta \) was supposed to have a nonnegative right derivative \(\theta '(0^{+})\) at zero. In [7], the proof was extended to pairs \((f,F)\) in \(SBV\times L^{1}\) and to pairs \((\varphi ,\theta )\) of non-negative functions, which in the decomposition (36) are replaced by their convex and lower semicontinuous envelope and by their subadditive envelope, respectively.
 
40
Baìa et al. [2]. A finer characterization of the dependence of \(\varphi \) and \(\theta \) upon \(F\) and \(M\) was given in the recent paper [38] by Šilhavý.
 
41
However, \(\theta \) may also have an energetic part, related to the back stress of Prager’s kinematic hardening model. See, e.g., Anand and Gurtin [1].
 
Literatur
1.
Zurück zum Zitat Anand, L., Gurtin, M.E.: A theory of amorphous solids undergoing large deformations, with application to polymeric glasses. Int. J. Solids Struct. 40, 1465–1487 (2003) CrossRefMATH Anand, L., Gurtin, M.E.: A theory of amorphous solids undergoing large deformations, with application to polymeric glasses. Int. J. Solids Struct. 40, 1465–1487 (2003) CrossRefMATH
2.
Zurück zum Zitat Baía, M., Matias, J., Santos, P.M.: A relaxation result in the framework of structured deformations in the \(BV\)-setting. Proc. R. Soc. Edinb. 142A, 239–271 (2012) CrossRefMATH Baía, M., Matias, J., Santos, P.M.: A relaxation result in the framework of structured deformations in the \(BV\)-setting. Proc. R. Soc. Edinb. 142A, 239–271 (2012) CrossRefMATH
3.
Zurück zum Zitat Casey, J., Naghdi, P.M.: A remark on the use of the decomposition \(F=F_{e}F_{p}\) in plasticity. ASME J. Appl. Mech. 47, 672–675 (1980) ADSCrossRefMATH Casey, J., Naghdi, P.M.: A remark on the use of the decomposition \(F=F_{e}F_{p}\) in plasticity. ASME J. Appl. Mech. 47, 672–675 (1980) ADSCrossRefMATH
4.
Zurück zum Zitat Choksi, R., Fonseca, I.: Bulk and interfacial energy densities for structured deformations of continua. Arch. Ration. Mech. Anal. 138, 37–103 (1997) MathSciNetCrossRefMATH Choksi, R., Fonseca, I.: Bulk and interfacial energy densities for structured deformations of continua. Arch. Ration. Mech. Anal. 138, 37–103 (1997) MathSciNetCrossRefMATH
5.
Zurück zum Zitat Clifton, R.J.: On the equivalence of \(F^{e}F^{p}\) and \(\bar{F}^{p} \bar{F}^{e}\) ASME J. Appl. Mech. 39, 287–289 (1972) ADSCrossRef Clifton, R.J.: On the equivalence of \(F^{e}F^{p}\) and \(\bar{F}^{p} \bar{F}^{e}\) ASME J. Appl. Mech. 39, 287–289 (1972) ADSCrossRef
6.
Zurück zum Zitat Dashner, P.A.: Invariance considerations in large strain elasto-plasticity. ASME J. Appl. Mech. 53, 56–60 (1986) CrossRefMATH Dashner, P.A.: Invariance considerations in large strain elasto-plasticity. ASME J. Appl. Mech. 53, 56–60 (1986) CrossRefMATH
8.
Zurück zum Zitat Del Piero, G.: Foundations of the theory of structured deformations. In: Del Piero, G., Owen, D.R. (eds.) CISM Course “Multiscale Modeling in Continuum Mechanics and Structured Deformations”, Udine, 2002. CISM Courses and Lectures, vol. 447, pp. 125–175. Springer, Wien (2004) CrossRef Del Piero, G.: Foundations of the theory of structured deformations. In: Del Piero, G., Owen, D.R. (eds.) CISM Course “Multiscale Modeling in Continuum Mechanics and Structured Deformations”, Udine, 2002. CISM Courses and Lectures, vol. 447, pp. 125–175. Springer, Wien (2004) CrossRef
9.
Zurück zum Zitat Del Piero, G.: An axiomatic framework for the mechanics of generalized continua. Rend. Lincei, Mat. Appl. (2017, in press) Del Piero, G.: An axiomatic framework for the mechanics of generalized continua. Rend. Lincei, Mat. Appl. (2017, in press)
11.
Zurück zum Zitat Del Piero, G., Owen, D.R.: Integral-gradient formulae for structured deformations. Arch. Ration. Mech. Anal. 131, 121–138 (1995) MathSciNetCrossRefMATH Del Piero, G., Owen, D.R.: Integral-gradient formulae for structured deformations. Arch. Ration. Mech. Anal. 131, 121–138 (1995) MathSciNetCrossRefMATH
12.
13.
Zurück zum Zitat Green, A.E., Naghdi, P.M.: Some remarks on elastic-plastic deformation at finite strain. Int. J. Eng. Sci. 9, 1219–1229 (1971) CrossRefMATH Green, A.E., Naghdi, P.M.: Some remarks on elastic-plastic deformation at finite strain. Int. J. Eng. Sci. 9, 1219–1229 (1971) CrossRefMATH
14.
Zurück zum Zitat Gurtin, M.E., Anand, L.: The decomposition \(F=F^{e}F^{p}\), material symmetry, and plastic irrotationality for solids that are isotropic-viscoplastic or amorphous. Int. J. Plast. 21, 1686–1719 (2005) CrossRefMATH Gurtin, M.E., Anand, L.: The decomposition \(F=F^{e}F^{p}\), material symmetry, and plastic irrotationality for solids that are isotropic-viscoplastic or amorphous. Int. J. Plast. 21, 1686–1719 (2005) CrossRefMATH
15.
Zurück zum Zitat Gurtin, M.E., Fried, E., Anand, L.: The Mechanics and Thermodynamics of Continua. Cambridge Univ. Press, Cambridge (2010) CrossRef Gurtin, M.E., Fried, E., Anand, L.: The Mechanics and Thermodynamics of Continua. Cambridge Univ. Press, Cambridge (2010) CrossRef
16.
Zurück zum Zitat Hashiguchi, K., Yamakawa, Y.: Introduction to Finite Strain Theory for Continuum Elasto-Plasticity. Wiley, Chicester (2013) Hashiguchi, K., Yamakawa, Y.: Introduction to Finite Strain Theory for Continuum Elasto-Plasticity. Wiley, Chicester (2013)
17.
Zurück zum Zitat Kratochvíl, J.: A finite strain theory of elastic-inelastic materials. Acta Mech. 16, 127–142 (1973) CrossRefMATH Kratochvíl, J.: A finite strain theory of elastic-inelastic materials. Acta Mech. 16, 127–142 (1973) CrossRefMATH
18.
Zurück zum Zitat Kröner, E.: Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen. Arch. Ration. Mech. Anal. 4, 273–334 (1960) MathSciNetCrossRefMATH Kröner, E.: Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen. Arch. Ration. Mech. Anal. 4, 273–334 (1960) MathSciNetCrossRefMATH
19.
20.
Zurück zum Zitat Lee, E.H.: Some comments on elastic-plastic analysis. Int. J. Solids Struct. 17, 859–872 (1981) CrossRefMATH Lee, E.H.: Some comments on elastic-plastic analysis. Int. J. Solids Struct. 17, 859–872 (1981) CrossRefMATH
21.
Zurück zum Zitat Lee, E.H., Liu, D.T.: Finite-strain elastic-plastic theory with application to plane-wave analysis. J. Appl. Phys. 38, 19–27 (1967) ADSCrossRef Lee, E.H., Liu, D.T.: Finite-strain elastic-plastic theory with application to plane-wave analysis. J. Appl. Phys. 38, 19–27 (1967) ADSCrossRef
22.
Zurück zum Zitat Lemaitre, J., Chaboche, J.-L.: Mécanique des matériaux solides. Dunod, Paris (1985). English translation: Mechanics of Solid Materials. Cambridge Univ. Press, Cambridge (1990) Lemaitre, J., Chaboche, J.-L.: Mécanique des matériaux solides. Dunod, Paris (1985). English translation: Mechanics of Solid Materials. Cambridge Univ. Press, Cambridge (1990)
23.
Zurück zum Zitat Lubarda, V.A.: Constitutive analysis of large elasto-plastic deformation based on the multiplicative decomposition of deformation gradient. Int. J. Solids Struct. 27, 885–895 (1991) CrossRefMATH Lubarda, V.A.: Constitutive analysis of large elasto-plastic deformation based on the multiplicative decomposition of deformation gradient. Int. J. Solids Struct. 27, 885–895 (1991) CrossRefMATH
24.
Zurück zum Zitat Lubarda, V.A.: Duality in constitutive formulation of finite-strain elastoplasticity based on \(F=F_{e}F_{p}\) and \(F=F^{p}F^{e}\) decompositions. Int. J. Plast. 15, 1277–1290 (1999) CrossRefMATH Lubarda, V.A.: Duality in constitutive formulation of finite-strain elastoplasticity based on \(F=F_{e}F_{p}\) and \(F=F^{p}F^{e}\) decompositions. Int. J. Plast. 15, 1277–1290 (1999) CrossRefMATH
25.
Zurück zum Zitat Lubarda, V.A., Lee, E.H.: A correct definition of elastic and plastic deformation and its computational significance. ASME J. Appl. Mech. 48, 35–40 (1981) ADSMathSciNetCrossRefMATH Lubarda, V.A., Lee, E.H.: A correct definition of elastic and plastic deformation and its computational significance. ASME J. Appl. Mech. 48, 35–40 (1981) ADSMathSciNetCrossRefMATH
26.
Zurück zum Zitat Lubliner, J.: Plasticity Theory. MacMillan, New York (1990) MATH Lubliner, J.: Plasticity Theory. MacMillan, New York (1990) MATH
27.
Zurück zum Zitat Mandel, J.: Définition d’un repère privilégié pour l’étude des transformations anélastiques du polycristal. J. Méc. Théor. Appl. 1, 7–23 (1982) MATH Mandel, J.: Définition d’un repère privilégié pour l’étude des transformations anélastiques du polycristal. J. Méc. Théor. Appl. 1, 7–23 (1982) MATH
28.
Zurück zum Zitat Nemat-Nasser, S.: Decomposition of strain measures and their rates in finite deformation elastoplasticity. Int. J. Solids Struct. 15, 155–166 (1979) CrossRefMATH Nemat-Nasser, S.: Decomposition of strain measures and their rates in finite deformation elastoplasticity. Int. J. Solids Struct. 15, 155–166 (1979) CrossRefMATH
30.
Zurück zum Zitat Noll, W.: Lectures on the foundations of continuum mechanics and thermodynamics. Arch. Ration. Mech. Anal. 52, 62–92 (1973) MathSciNetCrossRefMATH Noll, W.: Lectures on the foundations of continuum mechanics and thermodynamics. Arch. Ration. Mech. Anal. 52, 62–92 (1973) MathSciNetCrossRefMATH
31.
Zurück zum Zitat Owen, D.R.: Deformations and stresses with and without microslip. In: Brock, L.M. (ed.) Defects and Anelasticity in the Characterization of Crystalline Solids. ASME, New York (1992) Owen, D.R.: Deformations and stresses with and without microslip. In: Brock, L.M. (ed.) Defects and Anelasticity in the Characterization of Crystalline Solids. ASME, New York (1992)
32.
Zurück zum Zitat Owen, D.R.: Structured Deformations, Part Two. XXII Scuola Estiva di Fisica Matematica, Ravello, 1997. Quaderni dell’Istituto Nazionale di Alta Matematica, CNR-GNFM (2000) Owen, D.R.: Structured Deformations, Part Two. XXII Scuola Estiva di Fisica Matematica, Ravello, 1997. Quaderni dell’Istituto Nazionale di Alta Matematica, CNR-GNFM (2000)
33.
Zurück zum Zitat Owen, D.R.: Elasticity with space-like disarrangements. In: Del Piero, G., Owen, D.R. (eds.) CISM Course “Multiscale Modeling in Continuum Mechanics and Structured Deformations”, Udine, 2002. CISM Courses and Lectures, vol. 447, pp. 231–275. Springer, Wien (2004) CrossRef Owen, D.R.: Elasticity with space-like disarrangements. In: Del Piero, G., Owen, D.R. (eds.) CISM Course “Multiscale Modeling in Continuum Mechanics and Structured Deformations”, Udine, 2002. CISM Courses and Lectures, vol. 447, pp. 231–275. Springer, Wien (2004) CrossRef
34.
Zurück zum Zitat Reina, C., Conti, S.: Kinematic description of crystal plasticity in the finite kinematc framework: a micromechanical understanding of \(F=F^{e}F^{p}\). J. Mech. Phys. Solids 67, 40–61 (2014) ADSMathSciNetCrossRefMATH Reina, C., Conti, S.: Kinematic description of crystal plasticity in the finite kinematc framework: a micromechanical understanding of \(F=F^{e}F^{p}\). J. Mech. Phys. Solids 67, 40–61 (2014) ADSMathSciNetCrossRefMATH
35.
Zurück zum Zitat Sadik, S., Yavari, A.: On the origins of the idea of the multiplicative decomposition of the deformation gradient. Math. Mech. Solids 22, 771–772 (2015) MathSciNetCrossRefMATH Sadik, S., Yavari, A.: On the origins of the idea of the multiplicative decomposition of the deformation gradient. Math. Mech. Solids 22, 771–772 (2015) MathSciNetCrossRefMATH
36.
Zurück zum Zitat Sidoroff, F.: Quelques réflexions sur le principe d’indifférence matérielle pour un milieu ayant un état relâché. C. R. Acad. Sci. Paris 271, 1026–1029 (1970) MATH Sidoroff, F.: Quelques réflexions sur le principe d’indifférence matérielle pour un milieu ayant un état relâché. C. R. Acad. Sci. Paris 271, 1026–1029 (1970) MATH
37.
Zurück zum Zitat Šilhavý M.: On transformation laws for plastic deformations of materials with elastic range. Arch. Ration. Mech. Anal. 63, 169–182 (1977) MathSciNetCrossRefMATH Šilhavý M.: On transformation laws for plastic deformations of materials with elastic range. Arch. Ration. Mech. Anal. 63, 169–182 (1977) MathSciNetCrossRefMATH
38.
Zurück zum Zitat Šilhavý M.: The general form of the relaxation of a purely interfacial energy for structured deformations. Math. Mech. Complex Syst. (2017, in press) Šilhavý M.: The general form of the relaxation of a purely interfacial energy for structured deformations. Math. Mech. Complex Syst. (2017, in press)
39.
Zurück zum Zitat Simo, J.C., Hughes, T.J.R.: Computational Inelasticity. Springer, New York (1997) MATH Simo, J.C., Hughes, T.J.R.: Computational Inelasticity. Springer, New York (1997) MATH
40.
Zurück zum Zitat Truesdell, C., Noll, W.: The non-linear field theories of mechanics. In: Flügge, S. (ed.) Handbuch der Physik, vol. III/3. Springer, Berlin (1965) Truesdell, C., Noll, W.: The non-linear field theories of mechanics. In: Flügge, S. (ed.) Handbuch der Physik, vol. III/3. Springer, Berlin (1965)
Metadaten
Titel
On the Decomposition of the Deformation Gradient in Plasticity
verfasst von
Gianpietro Del Piero
Publikationsdatum
28.06.2017
Verlag
Springer Netherlands
Erschienen in
Journal of Elasticity / Ausgabe 1/2018
Print ISSN: 0374-3535
Elektronische ISSN: 1573-2681
DOI
https://doi.org/10.1007/s10659-017-9648-z

Weitere Artikel der Ausgabe 1/2018

Journal of Elasticity 1/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.