Skip to main content

2022 | OriginalPaper | Buchkapitel

On the Design of Front-To-Total Anti-roll Moment Distribution Controllers for Enhancing the Cornering Response

verfasst von : Marco Ricco, Matteo Dalboni, Patrick Gruber, Miguel Dhaens, Aldo Sorniotti

Erschienen in: 12th International Munich Chassis Symposium 2021

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the last three decades a relatively wide literature has discussed the potential vehicle dynamics benefits of the control of the front-to-total anti-roll moment distribution generated by active suspension systems, either based on actuators located within the individual corners or controllable anti-roll bars. However, because of the nonlinearity of the involved phenomena, there is a lack of systematic model based design routines to achieve the reference cornering response in steady-state and transient conditions through active suspension controllers, and for the integration of suspension control with direct yaw moment control. This paper targets such knowledge gap, by introducing design tools for front-to-total anti-roll moment distribution control, based on: i) optimizations using a quasi-static model for the computation of the non-linear feedforward contribution of the controller; ii) a novel linearized vehicle model formulation for linear control design in the frequency domain; and iii) a nonlinear vehicle model formulation to be used as prediction model for nonlinear model predictive control. A set of simulation and experimental results shows the benefits in terms of: a) understeer gradient tunability; b) increased maximum achievable lateral acceleration; c) increased yaw and sideslip damping; and d) energy consumption reduction.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Danesin D, Krief P, Sorniotti A, Velardocchia M (2003) “Active roll control to increase handling and comfort,” SAE Technical Paper 2003–01–0962 Danesin D, Krief P, Sorniotti A, Velardocchia M (2003) “Active roll control to increase handling and comfort,” SAE Technical Paper 2003–01–0962
2.
Zurück zum Zitat Clover C, Bernard J (1993) “The Influence of Lateral Load Transfer Distribution on Directional Response,” SAE Technical Paper 930763 Clover C, Bernard J (1993) “The Influence of Lateral Load Transfer Distribution on Directional Response,” SAE Technical Paper 930763
3.
Zurück zum Zitat Ren S, Li Z, Yao J, Taheri S (2016) “Improving lateral stability by distributing roll moment via semi-active suspension,” FISITA World Automotive Congress Ren S, Li Z, Yao J, Taheri S (2016) “Improving lateral stability by distributing roll moment via semi-active suspension,” FISITA World Automotive Congress
4.
Zurück zum Zitat Williams DE, Haddad WM (1995) Nonlinear control of roll moment distribution to influence vehicle yaw characteristics. IEEE Trans. on Control Syst Technol 3(1):110–116CrossRef Williams DE, Haddad WM (1995) Nonlinear control of roll moment distribution to influence vehicle yaw characteristics. IEEE Trans. on Control Syst Technol 3(1):110–116CrossRef
5.
Zurück zum Zitat Wang J, Wilson DA, Xu W, Crolla DA (2005) “Active suspension control to improve vehicle ride and steady-state handling,” IEEE Conference on Decision and Control Wang J, Wilson DA, Xu W, Crolla DA (2005) “Active suspension control to improve vehicle ride and steady-state handling,” IEEE Conference on Decision and Control
6.
Zurück zum Zitat Chu TW, Jones RP (2008) Analysis and simulation of nonlinear handling characteristics of automotive vehicles with focus on lateral load transfer. Veh Syst Dyn 46(1):17–31CrossRef Chu TW, Jones RP (2008) Analysis and simulation of nonlinear handling characteristics of automotive vehicles with focus on lateral load transfer. Veh Syst Dyn 46(1):17–31CrossRef
7.
Zurück zum Zitat Bodie MO, Hac A (2000) “Closed loop yaw control of vehicles using magneto-rheological dampers,”AE Technical Paper 2000–01–0107 Bodie MO, Hac A (2000) “Closed loop yaw control of vehicles using magneto-rheological dampers,”AE Technical Paper 2000–01–0107
8.
Zurück zum Zitat Lakehal-Ayat M, Diop S, Fenaux E (2002) “An improved active suspension yaw rate control,” American Control Conference Lakehal-Ayat M, Diop S, Fenaux E (2002) “An improved active suspension yaw rate control,” American Control Conference
9.
Zurück zum Zitat Genta G (1997) “Motor vehicle dynamics: modeling and simulation,” World Scientific, 1st ed Genta G (1997) “Motor vehicle dynamics: modeling and simulation,” World Scientific, 1st ed
10.
Zurück zum Zitat Xu Y, Ahmadian M (2013) Improving the capacity of tire normal force via variable stiffness and damping suspension system. J. of Terramechanics 50(2):122–132CrossRef Xu Y, Ahmadian M (2013) Improving the capacity of tire normal force via variable stiffness and damping suspension system. J. of Terramechanics 50(2):122–132CrossRef
11.
Zurück zum Zitat Gerhard J, Laiou MC, Monnigmann M, Marquardt W (2005) Robust yaw control design with active differential and active roll control systems. IFAC Proceedings 38(1):73–78 Gerhard J, Laiou MC, Monnigmann M, Marquardt W (2005) Robust yaw control design with active differential and active roll control systems. IFAC Proceedings 38(1):73–78
12.
Zurück zum Zitat Xinpeng T, Xiaocheng D (2007) “Simulation and study of active roll control for SUV based on fuzzy PID,” SAE Technical Paper 2007–01–3570 Xinpeng T, Xiaocheng D (2007) “Simulation and study of active roll control for SUV based on fuzzy PID,” SAE Technical Paper 2007–01–3570
13.
Zurück zum Zitat Abe M (1994) “A study on effects of roll moment distribution control in active suspension on improvement of limit performance of vehicle handling,” Int. J. of Vehicle Design 15(3/4/5):326–336 Abe M (1994) “A study on effects of roll moment distribution control in active suspension on improvement of limit performance of vehicle handling,” Int. J. of Vehicle Design 15(3/4/5):326–336
14.
Zurück zum Zitat Cooper N, Crolla D, Levesley M (2005) “Integration of active suspension and active driveline to ensure stability while improving vehicle dynamics,” SAE Technical Paper 2005–01–0414 Cooper N, Crolla D, Levesley M (2005) “Integration of active suspension and active driveline to ensure stability while improving vehicle dynamics,” SAE Technical Paper 2005–01–0414
15.
Zurück zum Zitat Yan M, Pi D, Li Y, Wang H, Wang E (2018) “The design of anti-roll moment distribution for dual-channel active stabilizer bar system,” Chinese Control and Decision Conference Yan M, Pi D, Li Y, Wang H, Wang E (2018) “The design of anti-roll moment distribution for dual-channel active stabilizer bar system,” Chinese Control and Decision Conference
16.
Zurück zum Zitat Termousa H, Shraima H, Taljb R, Francisa C, Charara A (2019) Coordinated control strategies for active steering, differential braking and active suspension for vehicle stability, handling and safety improvement. Veh Syst Dyn 57(10):1494–1529CrossRef Termousa H, Shraima H, Taljb R, Francisa C, Charara A (2019) Coordinated control strategies for active steering, differential braking and active suspension for vehicle stability, handling and safety improvement. Veh Syst Dyn 57(10):1494–1529CrossRef
17.
Zurück zum Zitat Ricco M, Zanchetta M, Cardolini Rizzo G, Tavernini D, Sorniotti A, Chatzikomis C, Velardocchia M, Geraerts M, Dhaens M (2019) “On the design of yaw rate control via variable front-to-total anti-roll moment distribution,” IEEE Trans. on Vehicular Technology 69(2):1388–1403 Ricco M, Zanchetta M, Cardolini Rizzo G, Tavernini D, Sorniotti A, Chatzikomis C, Velardocchia M, Geraerts M, Dhaens M (2019) “On the design of yaw rate control via variable front-to-total anti-roll moment distribution,” IEEE Trans. on Vehicular Technology 69(2):1388–1403
18.
Zurück zum Zitat Ricco M, Percolla A, Cardolini Rizzo G, Zanchetta M, Tavernini D, Dhaens M, Geraerts M, Vigliani A,Tota A, Sorniotti A (2020) “On the model-based design of front-to-total anti-roll moment distribution controllers for yaw rate tracking,” Vehicle System Dynamics, pp. 1–28 Ricco M, Percolla A, Cardolini Rizzo G, Zanchetta M, Tavernini D, Dhaens M, Geraerts M, Vigliani A,Tota A, Sorniotti A (2020) “On the model-based design of front-to-total anti-roll moment distribution controllers for yaw rate tracking,” Vehicle System Dynamics, pp. 1–28
19.
Zurück zum Zitat Dalboni M, D. Tavernini D, Montanaro U, Soldati A, Concari C, Dhaens M, Sorniotti A 2021 (in press) “Nonlinear Model Predictive Control for Integrated Energy-Efficient Torque-Vectoring and Anti-Roll Moment Distribution,” IEEE/ASME Trans. on Mechatronics Dalboni M, D. Tavernini D, Montanaro U, Soldati A, Concari C, Dhaens M, Sorniotti A 2021 (in press) “Nonlinear Model Predictive Control for Integrated Energy-Efficient Torque-Vectoring and Anti-Roll Moment Distribution,” IEEE/ASME Trans. on Mechatronics
20.
Zurück zum Zitat Pacejka HB (2012) “Tire and vehicle dynamics,” 3rd ed., Butterworth-Heinemann Pacejka HB (2012) “Tire and vehicle dynamics,” 3rd ed., Butterworth-Heinemann
21.
Zurück zum Zitat Skogestad S, Postlethwaite I (2007) “Multivariable feedback control: analysis and design,” 2nd ed., Wiley Skogestad S, Postlethwaite I (2007) “Multivariable feedback control: analysis and design,” 2nd ed., Wiley
Metadaten
Titel
On the Design of Front-To-Total Anti-roll Moment Distribution Controllers for Enhancing the Cornering Response
verfasst von
Marco Ricco
Matteo Dalboni
Patrick Gruber
Miguel Dhaens
Aldo Sorniotti
Copyright-Jahr
2022
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-64550-5_14

Premium Partner