Skip to main content
Erschienen in: Swarm Intelligence 4/2015

01.10.2015

On the design of generalist strategies for swarms of simulated robots engaged in a task-allocation scenario

verfasst von: Elio Tuci, Alexandre Rabérin

Erschienen in: Swarm Intelligence | Ausgabe 4/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This study focuses on issues related to the evolutionary design of task-allocation mechanisms for swarm robotics systems with agents potentially capable of performing different tasks. Task allocation in swarm robotics refers to a process that results in the distribution of robots to different concurrent tasks without any central or hierarchical control. In this paper, we investigate a scenario with two concurrent tasks (i.e. foraging and nest patrolling) and two environments in which the task priorities vary. We are interested in generating successful groups made of behaviourally plastic agents (i.e. agents that are capable of carrying out different tasks in different environmental conditions), which could adapt their task preferences to those of their group mates as well as to the environmental conditions. We compare the results of three different evolutionary design approaches, which differ in terms of the agents’ genetic relatedness (i.e. groups of clones and groups of unrelated individuals), and/or the selection criteria used to create new populations (i.e. single and multi-objective evolutionary optimisation algorithms). We show results indicating that the evolutionary approach based on the use of genetically unrelated individuals in combination with a multi-objective evolutionary optimisation algorithm has a better success rate then an evolutionary approach based on the use of genetically related agents. Moreover, the multi-objective approach, when compared to a single-objective approach and genetically unrelated individual, significantly limits the tendency towards task specialisation by favouring the emergence of generalist agents without introducing extra computational costs. The significance of this result is discussed in view of the relationship between individual behavioural skills and swarm effectiveness.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
A more comprehensive discussion of the advantages of the aclonal over the clonal approach can be found in Tuci and Trianni (2014).
 
2
Note that this is just a linguistic description of the task-allocation process required by this scenario. This description should not be interpreted as an operational illustration of the agents’ behaviour.
 
3
In all post-evaluation tests described in this Section, each single group undergoes a set of \(E=80\) differently seeded t-sequences (40 ABA-sequence, and 40 BAB-sequence), each made of \(V=3\) trials, for a total of 240 trials, 120 trials in Env. A and 120 trials in Env. B. Each t-sequence differs from the others in the initialisation of the random number generator, which influences the agents initial position and orientation at trial 1 and during repositioning, all the randomly defined features of the environment, and the noise added to motors and sensors.
 
Literatur
Zurück zum Zitat Allwright, M., Bhalla, N., El-Faham, H., Antoun, A., Pinciroli, C., & Dorigo, M. (2014). SRoCS: Leveraging stigmergy on a multi-robot construction platform for unknown environments. In M. Dorigo, M. Birattari, S. Garnier, H. Hamann, M. Montes de Oca, C. Solnon, & T. Stützle (Eds.), Proceedings of the 9th international conference on swarm intelligence, LNCS, Vol. 8667. Springer, pp. 158–169. Allwright, M., Bhalla, N., El-Faham, H., Antoun, A., Pinciroli, C., & Dorigo, M. (2014). SRoCS: Leveraging stigmergy on a multi-robot construction platform for unknown environments. In M. Dorigo, M. Birattari, S. Garnier, H. Hamann, M. Montes de Oca, C. Solnon, & T. Stützle (Eds.), Proceedings of the 9th international conference on swarm intelligence, LNCS, Vol. 8667. Springer, pp. 158–169.
Zurück zum Zitat Beer, R. D., & Gallagher, J. C. (1992). Evolving dynamic neural networks for adaptive behavior. Adaptive Behavior, 1(1), 91–122.CrossRef Beer, R. D., & Gallagher, J. C. (1992). Evolving dynamic neural networks for adaptive behavior. Adaptive Behavior, 1(1), 91–122.CrossRef
Zurück zum Zitat Brutschy, A., Tran, N.-L., Baiboun, N., Frison, M., Pini, G., Roli, A., et al. (2012). Costs and benefits of behavioral specialization. Robotics and Autonomous Systems, 60(11), 1408–1420.CrossRef Brutschy, A., Tran, N.-L., Baiboun, N., Frison, M., Pini, G., Roli, A., et al. (2012). Costs and benefits of behavioral specialization. Robotics and Autonomous Systems, 60(11), 1408–1420.CrossRef
Zurück zum Zitat Brutschy, A., Pini, G., Pinciroli, C., Birattari, M., & Dorigo, M. (2014). Self-organized task allocation to sequentially interdependent tasks in swarm robotics. Autonomous Agents and Multi-agent Systems, 28(1), 101–125.CrossRef Brutschy, A., Pini, G., Pinciroli, C., Birattari, M., & Dorigo, M. (2014). Self-organized task allocation to sequentially interdependent tasks in swarm robotics. Autonomous Agents and Multi-agent Systems, 28(1), 101–125.CrossRef
Zurück zum Zitat Dancieux, S., Bredeche, N., Mouret, J.-B., & Eiben, A. E. (2015). Evolutionary robotics: What, why, where to. Frontiers in Robotics and AI, 2, 1–18. Dancieux, S., Bredeche, N., Mouret, J.-B., & Eiben, A. E. (2015). Evolutionary robotics: What, why, where to. Frontiers in Robotics and AI, 2, 1–18.
Zurück zum Zitat Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation, 6(2), 182.CrossRef Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation, 6(2), 182.CrossRef
Zurück zum Zitat Doncieux, S., & Mouret, J.-B. (2014). Beyond black-box optimization: A review of selective pressures for evolutionary robotics. Evolutionary Intelligence, 7(2), 71–93.CrossRef Doncieux, S., & Mouret, J.-B. (2014). Beyond black-box optimization: A review of selective pressures for evolutionary robotics. Evolutionary Intelligence, 7(2), 71–93.CrossRef
Zurück zum Zitat Dorigo, M., & Şahin, E. (2004). Guest editorial. Special issue: Swarm robotics. Autonomous Robots, 17(2–3), 111–113.CrossRef Dorigo, M., & Şahin, E. (2004). Guest editorial. Special issue: Swarm robotics. Autonomous Robots, 17(2–3), 111–113.CrossRef
Zurück zum Zitat Dorigo, M., Tuci, E., Gross, R., Trianni, V., Labella, H. T., Nouyan, S., Deneubourg, J-L., Baldassarre, G., Nolfi, S., Mondada, F., Floreano, D., & Gambardella, L. M. (2004). The swarm-bots project. In E. Şahin & W.M. Spears (Eds.), Proceedings of the 1st international workshop on swarm robotics, LNCS, Vol. 3342. Springer, pp. 31–44. Dorigo, M., Tuci, E., Gross, R., Trianni, V., Labella, H. T., Nouyan, S., Deneubourg, J-L., Baldassarre, G., Nolfi, S., Mondada, F., Floreano, D., & Gambardella, L. M. (2004). The swarm-bots project. In E. Şahin & W.M. Spears (Eds.), Proceedings of the 1st international workshop on swarm robotics, LNCS, Vol. 3342. Springer, pp. 31–44.
Zurück zum Zitat Dorigo, M., Birattari, M., & Brambilla, M. (2014). Swarm robotics. Scholarpedia, 9(1), 1463.CrossRef Dorigo, M., Birattari, M., & Brambilla, M. (2014). Swarm robotics. Scholarpedia, 9(1), 1463.CrossRef
Zurück zum Zitat Ducatelle, F., Förster, A., Di Caro, G. A., & Gambardella, L.-M. (2009). New task allocation methods for robotic swarms. In Proceedings of the 9th IEEE/RAS conference on autonomous robot systems and competitions. IPCB-Instituto Politacnico de Castelo Branco. Ducatelle, F., Förster, A., Di Caro, G. A., & Gambardella, L.-M. (2009). New task allocation methods for robotic swarms. In Proceedings of the 9th IEEE/RAS conference on autonomous robot systems and competitions. IPCB-Instituto Politacnico de Castelo Branco.
Zurück zum Zitat Dudek, G., & Jenkin, M. (2000). Computational Principles of Mobile Robotics. Cambridge: Cambridge University Press, April 2000. ISBN 0521568765. Dudek, G., & Jenkin, M. (2000). Computational Principles of Mobile Robotics. Cambridge: Cambridge University Press, April 2000. ISBN 0521568765.
Zurück zum Zitat Ferrante, E., Turgut, A. E., Dué nez Guzmán, E., Dorigo, M., & Wenseleers, T. (2015). Evolution of self-organized task specialization in robot swarms. PLoS Computational Biology, 11(8), 1-2-1.CrossRef Ferrante, E., Turgut, A. E., Dué nez Guzmán, E., Dorigo, M., & Wenseleers, T. (2015). Evolution of self-organized task specialization in robot swarms. PLoS Computational Biology, 11(8), 1-2-1.CrossRef
Zurück zum Zitat Gigliotta, O., Mirolli, M., & Nolfi, S. (2014). Communication based dynamic role allocation in a group of homogeneous robots. Neural Computing, 13(3), 391–402.MathSciNet Gigliotta, O., Mirolli, M., & Nolfi, S. (2014). Communication based dynamic role allocation in a group of homogeneous robots. Neural Computing, 13(3), 391–402.MathSciNet
Zurück zum Zitat Goldberg, D. E. (1989). Genetic algorithms in search, optimization and machine learning. Reading, MA: Addison-Wesley.MATH Goldberg, D. E. (1989). Genetic algorithms in search, optimization and machine learning. Reading, MA: Addison-Wesley.MATH
Zurück zum Zitat Gordon, D. (1989). Dynamics of task-switching in harvester ants. Animal Behaviour, 38, 194–204.CrossRef Gordon, D. (1989). Dynamics of task-switching in harvester ants. Animal Behaviour, 38, 194–204.CrossRef
Zurück zum Zitat Gordon, D. (1996). The organisation of work in social insects. Nature, 380, 121–124.CrossRef Gordon, D. (1996). The organisation of work in social insects. Nature, 380, 121–124.CrossRef
Zurück zum Zitat Ijspeert, A. J., Martinoli, A., Billard, A., & Gambardella, L. M. (2001). Collaboration through the exploitation of local interactions in autonomous collective robotics: The stick pulling experiment. Autonomous Robots, 11(2), 149–171.CrossRefMATH Ijspeert, A. J., Martinoli, A., Billard, A., & Gambardella, L. M. (2001). Collaboration through the exploitation of local interactions in autonomous collective robotics: The stick pulling experiment. Autonomous Robots, 11(2), 149–171.CrossRefMATH
Zurück zum Zitat Labella, T. H., Dorigo, M., & Deneubourg, J.-L. (2006). Division of labour in a group of robots inspired by ants’ foraging behaviour. ACM Transactions on Autonomous and Adaptive System, 1(1), 4–25.CrossRef Labella, T. H., Dorigo, M., & Deneubourg, J.-L. (2006). Division of labour in a group of robots inspired by ants’ foraging behaviour. ACM Transactions on Autonomous and Adaptive System, 1(1), 4–25.CrossRef
Zurück zum Zitat Lehman, J., & Stanley, K. O. (2008). Exploiting open-endedness to solve problems through the search for novelty. In S. Bullock, J. Noble, R. Watson, & M. A. Bedau (Eds.), Proceedings of the 11th international conference on the simulation and synthesis of living systems (pp. 329–336). Cambridge, MA: MIT Press. Lehman, J., & Stanley, K. O. (2008). Exploiting open-endedness to solve problems through the search for novelty. In S. Bullock, J. Noble, R. Watson, & M. A. Bedau (Eds.), Proceedings of the 11th international conference on the simulation and synthesis of living systems (pp. 329–336). Cambridge, MA: MIT Press.
Zurück zum Zitat Mouret, J.-B. (2011). Novelty-based multiobjectivization. In S. Doncieux, N. Bredeche, & J.-B. Mouret (Eds.), New horizons in evolutionary robotics. Studies in Computational Intelligence (Vol. 341, pp. 139–154). Berlin, Heidelberg: Springer. Mouret, J.-B. (2011). Novelty-based multiobjectivization. In S. Doncieux, N. Bredeche, & J.-B. Mouret (Eds.), New horizons in evolutionary robotics. Studies in Computational Intelligence (Vol. 341, pp. 139–154). Berlin, Heidelberg: Springer.
Zurück zum Zitat Nitschke, G., Schut, M., & Eiben, A. (2007). Emergent specialization in biologically inspired collective behavior systems. In Intelligent complex adaptive systems. IGI, New York, pp. 100–140. Nitschke, G., Schut, M., & Eiben, A. (2007). Emergent specialization in biologically inspired collective behavior systems. In Intelligent complex adaptive systems. IGI, New York, pp. 100–140.
Zurück zum Zitat Nolfi, S., & Floreano, D. (2001). Evolutionary robotics: The biology, intelligence, and technology of self-organising machine. Cambridge, MA: MIT Press. Nolfi, S., & Floreano, D. (2001). Evolutionary robotics: The biology, intelligence, and technology of self-organising machine. Cambridge, MA: MIT Press.
Zurück zum Zitat Nolfi, S., & Gigliotta, O. (2010). Evorobot\(^{\star }\): A tool for running experiments on the evolution of communication. In S. Nolfi & M. Mirolli (Eds.), Evolution of communication and language in embodied agents (pp. 297–301). Berlin, Heidelberg: Springer.CrossRef Nolfi, S., & Gigliotta, O. (2010). Evorobot\(^{\star }\): A tool for running experiments on the evolution of communication. In S. Nolfi & M. Mirolli (Eds.), Evolution of communication and language in embodied agents (pp. 297–301). Berlin, Heidelberg: Springer.CrossRef
Zurück zum Zitat Page, R. E. (1997). The evolution of insects societies. Endeavour, 21(7), 114–120.CrossRef Page, R. E. (1997). The evolution of insects societies. Endeavour, 21(7), 114–120.CrossRef
Zurück zum Zitat Page, R. E., & Mitchell, S. D. (1998). Self-organisation and the evolution of division of labour. Apidologie, 29, 171–190.CrossRef Page, R. E., & Mitchell, S. D. (1998). Self-organisation and the evolution of division of labour. Apidologie, 29, 171–190.CrossRef
Zurück zum Zitat Pini, G., Brutschy, A., Frison, M., Roli, A., Dorigo, M., & Birattari, M. (2011). Task partitioning in swarms of robots: An adaptive method for strategy selection. Swarm Intelligence, 5(3–4), 283–304.CrossRef Pini, G., Brutschy, A., Frison, M., Roli, A., Dorigo, M., & Birattari, M. (2011). Task partitioning in swarms of robots: An adaptive method for strategy selection. Swarm Intelligence, 5(3–4), 283–304.CrossRef
Zurück zum Zitat Pini, G., Brutschy, A., Pinciroli, C., Dorigo, M., & Birattari, M. (2013a). Autonomous task partitioning in robot foraging: An approach based on cost estimation. Adaptive Behavior, 21(2), 118–136.CrossRef Pini, G., Brutschy, A., Pinciroli, C., Dorigo, M., & Birattari, M. (2013a). Autonomous task partitioning in robot foraging: An approach based on cost estimation. Adaptive Behavior, 21(2), 118–136.CrossRef
Zurück zum Zitat Pini, G., Gagliolo, M., Brutschy, A., Dorigo, M., & Birattari, M. (2013b). Task partitioning in a robot swarm: A study on the effect of communication. Swarm Intelligence, 7(2–3), 173–199.CrossRef Pini, G., Gagliolo, M., Brutschy, A., Dorigo, M., & Birattari, M. (2013b). Task partitioning in a robot swarm: A study on the effect of communication. Swarm Intelligence, 7(2–3), 173–199.CrossRef
Zurück zum Zitat Quinn, M. (2001). A comparison of approaches to the evolution of homogeneous multi/robot teams. In J. H. Kim, B. T. Zhang, G. Fogel, & I. Kusku (Eds.), Proceedings of them international conference on evolutionary computation, Vol. 1. IEEE Press, pp. 128–135. Quinn, M. (2001). A comparison of approaches to the evolution of homogeneous multi/robot teams. In J. H. Kim, B. T. Zhang, G. Fogel, & I. Kusku (Eds.), Proceedings of them international conference on evolutionary computation, Vol. 1. IEEE Press, pp. 128–135.
Zurück zum Zitat Seeley, T. D. (1989). Social foraging in honey bees: How nectar foragers assess their colony’s nutritional status. Behavioral Ecology and Sociobiology, 24(3), 181–199.CrossRef Seeley, T. D. (1989). Social foraging in honey bees: How nectar foragers assess their colony’s nutritional status. Behavioral Ecology and Sociobiology, 24(3), 181–199.CrossRef
Zurück zum Zitat Stanley, K. O., & Miikkulainen, R. (2004). Competitive coevolution through evolutionary complexification. Journal Artificial Intelligence Research, 21, 63–100. Stanley, K. O., & Miikkulainen, R. (2004). Competitive coevolution through evolutionary complexification. Journal Artificial Intelligence Research, 21, 63–100.
Zurück zum Zitat Trianni, V. (2014). Evolutionary robotics: Model or design. Frontiers in Robotics and AI, 1, 1–6.CrossRef Trianni, V. (2014). Evolutionary robotics: Model or design. Frontiers in Robotics and AI, 1, 1–6.CrossRef
Zurück zum Zitat Trianni, V., & Nolfi, S. (2011). Engineering the evolution of self-organizing behaviors in swarm robotics: A case study. Artificial Life, 17(3), 183–202.CrossRef Trianni, V., & Nolfi, S. (2011). Engineering the evolution of self-organizing behaviors in swarm robotics: A case study. Artificial Life, 17(3), 183–202.CrossRef
Zurück zum Zitat Tuci, E. (2014). Evolutionary swarm robotics: genetic diversity, task-allocation and task-switching behavior. In M. Dorigo, M. Birattari, S. Garnier, H. Hamann, M. Montes de Oca, C. Solnon, & T. Stützle (Eds.), Proceedings of the 9th international conference on swarm intelligence, LNCS (Vol. 8667, pp. 98–109). Springer. Tuci, E. (2014). Evolutionary swarm robotics: genetic diversity, task-allocation and task-switching behavior. In M. Dorigo, M. Birattari, S. Garnier, H. Hamann, M. Montes de Oca, C. Solnon, & T. Stützle (Eds.), Proceedings of the 9th international conference on swarm intelligence, LNCS (Vol. 8667, pp. 98–109). Springer.
Zurück zum Zitat Tuci, E., & Trianni, V. (2012). On the evolution of homogeneous multi-robot teams: Clonal versus aclonal approach. In T. Ziemke, C. Balkenius, & J. Hallam (Eds.), Proceedings of the 12th international conference on simulation of adaptive behavior, LNCS (Vol. 7426, pp. 391–400). Springer. Tuci, E., & Trianni, V. (2012). On the evolution of homogeneous multi-robot teams: Clonal versus aclonal approach. In T. Ziemke, C. Balkenius, & J. Hallam (Eds.), Proceedings of the 12th international conference on simulation of adaptive behavior, LNCS (Vol. 7426, pp. 391–400). Springer.
Zurück zum Zitat Tuci, E., & Trianni, V. (2014). On the evolution of homogeneous multi-robot teams: Clonal versus aclonal approaches. Neural Computing and Applications, 25(5), 1063–1076.CrossRef Tuci, E., & Trianni, V. (2014). On the evolution of homogeneous multi-robot teams: Clonal versus aclonal approaches. Neural Computing and Applications, 25(5), 1063–1076.CrossRef
Zurück zum Zitat Waibel, M., Keller, L., & Floreano, D. (2009). Genetic team composition and level of selection in the evolution of cooperation. IEEE Transaction of Evolutionary Computation, 13(3), 648–660.CrossRef Waibel, M., Keller, L., & Floreano, D. (2009). Genetic team composition and level of selection in the evolution of cooperation. IEEE Transaction of Evolutionary Computation, 13(3), 648–660.CrossRef
Metadaten
Titel
On the design of generalist strategies for swarms of simulated robots engaged in a task-allocation scenario
verfasst von
Elio Tuci
Alexandre Rabérin
Publikationsdatum
01.10.2015
Verlag
Springer US
Erschienen in
Swarm Intelligence / Ausgabe 4/2015
Print ISSN: 1935-3812
Elektronische ISSN: 1935-3820
DOI
https://doi.org/10.1007/s11721-015-0113-y