2008 | OriginalPaper | Buchkapitel
On the Diophantine Equation G n (x) = G m (y) with Q (x, y)=0
verfasst von : Clemens Fuchs, Attila Pethő, Robert F. Tichy
Erschienen in: Diophantine Approximation
Verlag: Springer Vienna
Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.
Wählen Sie Textabschnitte aus um mit Künstlicher Intelligenz passenden Patente zu finden. powered by
Markieren Sie Textabschnitte, um KI-gestützt weitere passende Inhalte zu finden. powered by (Link öffnet in neuem Fenster)
Let
K
denote an algebraically closed field of characteristic 0, and let A
0
,..., A
d–1
, G
0
,...,
G
d-
1
∈ K[
X
] and
$$ \left( {Gn\left( X \right)} \right)_{n = 0}^\infty $$
be a sequence of polynomials defined by the
d-
th order linear recurring relation
(1)
$$ G_{n + d} \left( X \right) = A_{d - 1} \left( X \right)G_{n + d - 1} \left( X \right) + \cdots + A_0 \left( X \right)G_n \left( X \right), for n \geqslant 0. $$
Furthermore, let P(
X
) ∈ K[
X
], deg
P
≥ 1. Recently, we investigated the question, what can be said about the number of solutions of the Diophantine equation
(2)
$$ Gn\left( X \right) = Gm\left( {P\left( X \right)} \right). $$