Skip to main content
Erschienen in: Acta Mechanica 3/2020

02.12.2019 | Original Paper

On the distribution of particles in propellant solids

verfasst von: P. A. Kakavas-Papaniaros

Erschienen in: Acta Mechanica | Ausgabe 3/2020

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This article examines the distribution of aluminum and ammonium perchlorate particles in propellants. The volume fraction of solids is determined as a function of the weight fraction of aluminum. For unimodal distribution of closed packed spheres the volume fraction reaches 74%. It is shown that in order to entrain spheres of a smaller size, in a structure with a tetrahedron enclosed by four nearest-neighbor spheres, the diameter of the smaller spheres must be approximately smaller than 22%. When the space is filled with large particles and between them introduced smaller particles, the volume fraction of solids increases by 5%. A relation was developed for the free volume of a propellant composite of N tetrahedra, \(N_{a}\) of which are occupied by secondary particles, and the thermodynamic probability of a distribution was also computed as well as the energy of adhesion. Based on random distribution, a relation between the larger and smaller particles was developed. In the last part of this analysis, a deformation of a composite space is examined, and a relation between the dilatation and the volume fraction of total solids which are dewetted is developed. The stress–strain behavior of a composite propellant material is replaced by new parameters which depend upon the dilatation.
Literatur
1.
Zurück zum Zitat Edwards, L.J., Stone C.M.: Air force rocket propulsion laboratory scientific and engineering. In: Final Report AFRPL-TR-68-42 (1968) Edwards, L.J., Stone C.M.: Air force rocket propulsion laboratory scientific and engineering. In: Final Report AFRPL-TR-68-42 (1968)
2.
Zurück zum Zitat Brouwers, H.J.H.: Particle-size distribution and packing fraction of geometric random packing. Phys. Rev. E 74, 031309 (2006)CrossRef Brouwers, H.J.H.: Particle-size distribution and packing fraction of geometric random packing. Phys. Rev. E 74, 031309 (2006)CrossRef
3.
Zurück zum Zitat Mehilal, S.J., Nandagopal, S., Singh, P.P., Radhakrishnan, K.K., Bhattacharya, B.: Size and shape of ammonium perchlorate and their influence on properties of composite propellant. Def. Sci. J. 59(3), 294–299 (2009)CrossRef Mehilal, S.J., Nandagopal, S., Singh, P.P., Radhakrishnan, K.K., Bhattacharya, B.: Size and shape of ammonium perchlorate and their influence on properties of composite propellant. Def. Sci. J. 59(3), 294–299 (2009)CrossRef
4.
5.
Zurück zum Zitat Kakavas, P.A.: Mechanical properties of propellant composite materials reinforced with ammonium perchlorate particles. Int. J. Solids Struct. 51(10), 2019–2026 (2014)CrossRef Kakavas, P.A.: Mechanical properties of propellant composite materials reinforced with ammonium perchlorate particles. Int. J. Solids Struct. 51(10), 2019–2026 (2014)CrossRef
6.
Zurück zum Zitat Zhang, M., Zhang, J., Zhai, P., Liu, L., Shi, H.: Numerical simulation on the interface debonding in solid propellant under large deformation by a cohesive zone model. Int. J. Mater. Prod. Technol. 42(1/2), 98–109 (2011)CrossRef Zhang, M., Zhang, J., Zhai, P., Liu, L., Shi, H.: Numerical simulation on the interface debonding in solid propellant under large deformation by a cohesive zone model. Int. J. Mater. Prod. Technol. 42(1/2), 98–109 (2011)CrossRef
7.
Zurück zum Zitat Gent, A.N.: Detachment of an elastic matrix from a rigid spherical inclusion. J. Mater. Sci. 15(11), 2884–2888 (1980)CrossRef Gent, A.N.: Detachment of an elastic matrix from a rigid spherical inclusion. J. Mater. Sci. 15(11), 2884–2888 (1980)CrossRef
8.
Zurück zum Zitat Bikerman, J.J.: Theory of peeling through a Hookean solid. J. Appl. Phys. 28, 1484–1485 (1957)CrossRef Bikerman, J.J.: Theory of peeling through a Hookean solid. J. Appl. Phys. 28, 1484–1485 (1957)CrossRef
9.
Zurück zum Zitat Li, G.C., Wang, Y.F., Jiang, A.M., Liu, X.Y.: A micromechanical model for debonding process in composite solid propellants. Appl. Mech. Mater. 148–149, 1107–1112 (2012)CrossRef Li, G.C., Wang, Y.F., Jiang, A.M., Liu, X.Y.: A micromechanical model for debonding process in composite solid propellants. Appl. Mech. Mater. 148–149, 1107–1112 (2012)CrossRef
10.
Zurück zum Zitat Matous, K., Inglis, H.M., Gu, X., Rypl, D., Jackson, T.L., Geubelle, P.H.: Multiscale modeling of solid propellants: from particle packing to failure. Compos. Sci. Technol. 67, 1694–1708 (2007)CrossRef Matous, K., Inglis, H.M., Gu, X., Rypl, D., Jackson, T.L., Geubelle, P.H.: Multiscale modeling of solid propellants: from particle packing to failure. Compos. Sci. Technol. 67, 1694–1708 (2007)CrossRef
11.
Zurück zum Zitat Yuna, K.-S., Park, J.-B., Jung, G.-D., Youna, S.-K.: Viscoelastic constitutive modeling of solid propellant with damage. Int. J. Solids Struct. 80, 118–127 (2016)CrossRef Yuna, K.-S., Park, J.-B., Jung, G.-D., Youna, S.-K.: Viscoelastic constitutive modeling of solid propellant with damage. Int. J. Solids Struct. 80, 118–127 (2016)CrossRef
12.
Zurück zum Zitat Jung, G.-D., et al.: A nonlinear viscoelastic constitutive model of solid propellant. Int. J. Solids Struct. 36(25), 3755–3777 (1999)CrossRef Jung, G.-D., et al.: A nonlinear viscoelastic constitutive model of solid propellant. Int. J. Solids Struct. 36(25), 3755–3777 (1999)CrossRef
13.
Zurück zum Zitat Xua, F., Aravasb, N., Sofronis, P.: Constitutive modeling of solid propellant materials with evolving microstructural damage. J. Mech. Phys. Solids 56, 2050–2073 (2008)CrossRef Xua, F., Aravasb, N., Sofronis, P.: Constitutive modeling of solid propellant materials with evolving microstructural damage. J. Mech. Phys. Solids 56, 2050–2073 (2008)CrossRef
14.
Zurück zum Zitat Farris, R.J.: Dilatation of granular filled elastomers under high rates of strain. J. Appl. Polym. Sci. 8, 25–35 (1964)CrossRef Farris, R.J.: Dilatation of granular filled elastomers under high rates of strain. J. Appl. Polym. Sci. 8, 25–35 (1964)CrossRef
15.
Zurück zum Zitat Ozupek, S., Becker, E.B.: Constitutive equations for solid propellants. J. Eng. Mater. Technol. 119, 125–132 (1997)CrossRef Ozupek, S., Becker, E.B.: Constitutive equations for solid propellants. J. Eng. Mater. Technol. 119, 125–132 (1997)CrossRef
16.
Zurück zum Zitat Ozupek, S.: Constitutive Equations for Solid Propellants. Ph.D. Thesis, The University of Texas at Austin (1997) Ozupek, S.: Constitutive Equations for Solid Propellants. Ph.D. Thesis, The University of Texas at Austin (1997)
17.
Zurück zum Zitat Martin, D.L.: A nonlinear constitutive relationship for composite propellants. In: Hasselman, D.P., Hellers, R.A. (eds.) Thermal Stresses in Severe Environments. Plenum Press, New York (1980) Martin, D.L.: A nonlinear constitutive relationship for composite propellants. In: Hasselman, D.P., Hellers, R.A. (eds.) Thermal Stresses in Severe Environments. Plenum Press, New York (1980)
19.
Zurück zum Zitat Kakavas, P.A., Chang, W.V.: Acoustic emission in bonded elastomer discs subjected to compression I. J. Appl. Polym. Sci. 45(5), 865–869 (1992)CrossRef Kakavas, P.A., Chang, W.V.: Acoustic emission in bonded elastomer discs subjected to compression I. J. Appl. Polym. Sci. 45(5), 865–869 (1992)CrossRef
Metadaten
Titel
On the distribution of particles in propellant solids
verfasst von
P. A. Kakavas-Papaniaros
Publikationsdatum
02.12.2019
Verlag
Springer Vienna
Erschienen in
Acta Mechanica / Ausgabe 3/2020
Print ISSN: 0001-5970
Elektronische ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-019-02553-1

Weitere Artikel der Ausgabe 3/2020

Acta Mechanica 3/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.