Skip to main content
Erschienen in: Experiments in Fluids 2/2020

01.02.2020 | Research Article

On the dynamics of sprays in complex gas turbine swirl injectors

verfasst von: Kuppuraj Rajamanickam, Aditya Potnis, Sonu Kumar, Saptarshi Basu

Erschienen in: Experiments in Fluids | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Coupling of spray with the coherent structures of highly turbulent flow has been a long-standing problem, especially in the context of liquid fuel delivery systems in gas turbine combustors. In this work, we analyze the evolution of the hydrodynamic topology and consequent spray-flow interactions in a dual swirl injector assembly. We have shown (using time-resolved particle image velocimetry) that the geometry of the swirl cup (exit flare angle and mixing length), as well as the flow orientation (counter vs. co) in the primary and secondary swirlers, ascertain the hydrodynamic transitions in the resultant flow field. Width of the recirculation zone \( \left( {{\raise0.7ex\hbox{$r$} \!\mathord{\left/ {\vphantom {r {R_{o} }}}\right.\kern-0pt} \!\lower0.7ex\hbox{${R_{o} }$}}} \right) \) is identified as the key length-scale used to ascertain the global characteristics of the flow field. For a given flare angle, reduction in length scale \( \left( {{\raise0.7ex\hbox{$r$} \!\mathord{\left/ {\vphantom {r {R_{o} }}}\right.\kern-0pt} \!\lower0.7ex\hbox{${R_{o} }$}}} \right) \) is witnessed with orientation switch from counter-rotation to co-rotation configuration. Proper orthogonal decomposition (POD) is implemented over instantaneous flow field data to extract energetic spatial flow structures and temporal modes. POD revealed the existence of distinct frequency bands depending on the relative dominance of the primary or secondary swirler flow fields. Dynamic mode decomposition (DMD) also has been carried out to delineate the evolution of dominant frequency values with respect to the experimental variables.

Graphic abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Alekseenko SV, Abdurakipov SS, Hrebtov MY, Tokarev MP, Dulin VM, Markovich DM (2018) Coherent structures in the near-field of swirling turbulent jets: a tomographic PIV study. Int J Heat Fluid Flow 70:363–379CrossRef Alekseenko SV, Abdurakipov SS, Hrebtov MY, Tokarev MP, Dulin VM, Markovich DM (2018) Coherent structures in the near-field of swirling turbulent jets: a tomographic PIV study. Int J Heat Fluid Flow 70:363–379CrossRef
Zurück zum Zitat Beér JM, Chigier NA (1972) Combustion aerodynamics. Krieger Publishing Company, New York Beér JM, Chigier NA (1972) Combustion aerodynamics. Krieger Publishing Company, New York
Zurück zum Zitat Chin JS, Rizk NK, Razdan MK (2000) Effect of inner and outer airflow characteristics on high liquid pressure prefilming airblast atomization. J Propul Power 16:297–301CrossRef Chin JS, Rizk NK, Razdan MK (2000) Effect of inner and outer airflow characteristics on high liquid pressure prefilming airblast atomization. J Propul Power 16:297–301CrossRef
Zurück zum Zitat Escudier MP, Keller J (1985) Recirculation in swirling flow-a manifestation of vortex breakdown. AIAA J 23:111–116CrossRef Escudier MP, Keller J (1985) Recirculation in swirling flow-a manifestation of vortex breakdown. AIAA J 23:111–116CrossRef
Zurück zum Zitat Froud D, O’doherty T, Syred N (1995) Phase averaging of the precessing vortex core in a swirl burner under piloted and premixed combustion conditions. Combust Flame 100:407–412CrossRef Froud D, O’doherty T, Syred N (1995) Phase averaging of the precessing vortex core in a swirl burner under piloted and premixed combustion conditions. Combust Flame 100:407–412CrossRef
Zurück zum Zitat Fu Y, Cai J, Jeng SM, Mongia H (2007) Characteristics of the swirling flow generated by a counter-rotating swirler. In: 43rd AIAA/ASME/SAE/ASEE joint propulsion conference & exhibit. p 5690 Fu Y, Cai J, Jeng SM, Mongia H (2007) Characteristics of the swirling flow generated by a counter-rotating swirler. In: 43rd AIAA/ASME/SAE/ASEE joint propulsion conference & exhibit. p 5690
Zurück zum Zitat Gicquel LY, Staffelbach G, Poinsot T (2012) Large eddy simulations of gaseous flames in gas turbine combustion chambers. Prog Energy Combust Sci 38:782–817CrossRef Gicquel LY, Staffelbach G, Poinsot T (2012) Large eddy simulations of gaseous flames in gas turbine combustion chambers. Prog Energy Combust Sci 38:782–817CrossRef
Zurück zum Zitat Giridharan M, Mongia H, Jeng SM (2003) Swirl Cup Modeling-Part VIII: Spray Combustion in CFM-56 Single-Cup Flame Tube. In: 41st aerospace sciences meeting and exhibit. p 319 Giridharan M, Mongia H, Jeng SM (2003) Swirl Cup Modeling-Part VIII: Spray Combustion in CFM-56 Single-Cup Flame Tube. In: 41st aerospace sciences meeting and exhibit. p 319
Zurück zum Zitat Gupta AK, Beer JM, Swithenbank J (1977) Concentric multi-annular swirl burner: stability limits and emission characteristics. In: Symposium (international) on combustion. Elsevier, pp 79–91 Gupta AK, Beer JM, Swithenbank J (1977) Concentric multi-annular swirl burner: stability limits and emission characteristics. In: Symposium (international) on combustion. Elsevier, pp 79–91
Zurück zum Zitat Gupta AK, Lilley DG, Syred N (1984) Swirl flows. Abacus Press, Tunbridge Wells, p 488 Gupta AK, Lilley DG, Syred N (1984) Swirl flows. Abacus Press, Tunbridge Wells, p 488
Zurück zum Zitat Hadef R, Lenze B (2008) Effects of co-and counter-swirl on the droplet characteristics in a spray flame. Chem Eng Process 47:2209–2217CrossRef Hadef R, Lenze B (2008) Effects of co-and counter-swirl on the droplet characteristics in a spray flame. Chem Eng Process 47:2209–2217CrossRef
Zurück zum Zitat Hsiao G, Mongia H (2003a) Swirl Cup Modeling Part 2: Inlet Conditions. In: 41st aerospace sciences meeting and exhibit. p 1350 Hsiao G, Mongia H (2003a) Swirl Cup Modeling Part 2: Inlet Conditions. In: 41st aerospace sciences meeting and exhibit. p 1350
Zurück zum Zitat Hsiao G, Mongia H (2003b) Swirl cup modeling part 3: grid independent solution with different turbulence models. In: 41st aerospace sciences meeting and exhibit. p 1349 Hsiao G, Mongia H (2003b) Swirl cup modeling part 3: grid independent solution with different turbulence models. In: 41st aerospace sciences meeting and exhibit. p 1349
Zurück zum Zitat Huang Y, Yang V (2005) Effect of swirl on combustion dynamics in a lean-premixed swirl-stabilized combustor. Proc Combust Inst 30:1775–1782CrossRef Huang Y, Yang V (2005) Effect of swirl on combustion dynamics in a lean-premixed swirl-stabilized combustor. Proc Combust Inst 30:1775–1782CrossRef
Zurück zum Zitat Huang Y, Yang V (2009) Dynamics and stability of lean-premixed swirl-stabilized combustion. Prog Energy Combust Sci 35:293–364CrossRef Huang Y, Yang V (2009) Dynamics and stability of lean-premixed swirl-stabilized combustion. Prog Energy Combust Sci 35:293–364CrossRef
Zurück zum Zitat Huang Y, Wang S, Yang V (2005) Flow and flame dynamics of lean premixed swirl injectors. In: Combustion instabilities in gas turbine engines: operational experience, fundamental mechanisms, and modeling. vol 210. AIAA, pp 215–277 Huang Y, Wang S, Yang V (2005) Flow and flame dynamics of lean premixed swirl injectors. In: Combustion instabilities in gas turbine engines: operational experience, fundamental mechanisms, and modeling. vol 210. AIAA, pp 215–277
Zurück zum Zitat Lasheras JC, Villermaux E, Hopfinger EJ (1998) Break-up and atomization of a round water jet by a high-speed annular air jet. J Fluid Mech 357:351–379CrossRef Lasheras JC, Villermaux E, Hopfinger EJ (1998) Break-up and atomization of a round water jet by a high-speed annular air jet. J Fluid Mech 357:351–379CrossRef
Zurück zum Zitat Lefebvre AH (1998) Gas turbine combustion. CRC Press, Boca Raton Lefebvre AH (1998) Gas turbine combustion. CRC Press, Boca Raton
Zurück zum Zitat Leuckel W (1967) Swirl intensities, swirl types and energy losses of different swirl generating devices Doc. No. G02/a/16, International Flame Research Foundation, Ijmuiden, Holland Leuckel W (1967) Swirl intensities, swirl types and energy losses of different swirl generating devices Doc. No. G02/a/16, International Flame Research Foundation, Ijmuiden, Holland
Zurück zum Zitat Li G, Gutmark EJ (2003) Geometry effects on the flow field and the spectral characteristics of a triple annular swirler. In: ASME turbo expo 2003, collocated with the 2003 international joint power generation conference. American society of mechanical engineers, pp 593–602 Li G, Gutmark EJ (2003) Geometry effects on the flow field and the spectral characteristics of a triple annular swirler. In: ASME turbo expo 2003, collocated with the 2003 international joint power generation conference. American society of mechanical engineers, pp 593–602
Zurück zum Zitat Liang H, Maxworthy T (2005) An experimental investigation of swirling jets. J Fluid Mech 525:115–159MATHCrossRef Liang H, Maxworthy T (2005) An experimental investigation of swirling jets. J Fluid Mech 525:115–159MATHCrossRef
Zurück zum Zitat Lilley DG (1977) Swirl flows in combustion: a review. AIAA J 15:1063–1078CrossRef Lilley DG (1977) Swirl flows in combustion: a review. AIAA J 15:1063–1078CrossRef
Zurück zum Zitat Markovich DM, Abdurakipov SS, Chikishev LM, Dulin VM, Hanjalić K (2014) Comparative analysis of low-and high-swirl confined flames and jets by proper orthogonal and dynamic mode decompositions. Phys Fluids 26:065109CrossRef Markovich DM, Abdurakipov SS, Chikishev LM, Dulin VM, Hanjalić K (2014) Comparative analysis of low-and high-swirl confined flames and jets by proper orthogonal and dynamic mode decompositions. Phys Fluids 26:065109CrossRef
Zurück zum Zitat Markovich DM, Dulin VM, Abdurakipov SS, Kozinkin LA, Tokarev MP, Hanjalić K (2016) Helical modes in low-and high-swirl jets measured by tomographic PIV. J Turbul 17:678–698CrossRef Markovich DM, Dulin VM, Abdurakipov SS, Kozinkin LA, Tokarev MP, Hanjalić K (2016) Helical modes in low-and high-swirl jets measured by tomographic PIV. J Turbul 17:678–698CrossRef
Zurück zum Zitat Merkle K, Büchner H, Zarzalis N, Sara ON (2003) Influence of co and counter swirl on lean stability limits of an airblast nozzle. In: ASME turbo expo 2003, collocated with the 2003 international joint power generation conference. American Society of Mechanical Engineers, pp 1–9 Merkle K, Büchner H, Zarzalis N, Sara ON (2003) Influence of co and counter swirl on lean stability limits of an airblast nozzle. In: ASME turbo expo 2003, collocated with the 2003 international joint power generation conference. American Society of Mechanical Engineers, pp 1–9
Zurück zum Zitat Mohan AT, Gaitonde DV, Visbal MR (2015) Model reduction and analysis of deep dynamic stall on a plunging airfoil using dynamic mode decomposition. In: 53rd AIAA aerospace sciences meeting. p 1058 Mohan AT, Gaitonde DV, Visbal MR (2015) Model reduction and analysis of deep dynamic stall on a plunging airfoil using dynamic mode decomposition. In: 53rd AIAA aerospace sciences meeting. p 1058
Zurück zum Zitat Mongia HC, Al-Roub M, Danis A, Elliott-Lewis D, Jeng SM, Johnson A, McDonell VG, Samuelsen GS, Vise S (2001) Swirl cup modeling part 1. AIAA Paper 3576:2001 Mongia HC, Al-Roub M, Danis A, Elliott-Lewis D, Jeng SM, Johnson A, McDonell VG, Samuelsen GS, Vise S (2001) Swirl cup modeling part 1. AIAA Paper 3576:2001
Zurück zum Zitat O’Connor J, Acharya V, Lieuwen T (2015) Transverse combustion instabilities: acoustic, fluid mechanic, and flame processes. Prog Energy Combust Sci 49:1–39CrossRef O’Connor J, Acharya V, Lieuwen T (2015) Transverse combustion instabilities: acoustic, fluid mechanic, and flame processes. Prog Energy Combust Sci 49:1–39CrossRef
Zurück zum Zitat Oberleithner K, Sieber M, Nayeri CN, Paschereit CO, Petz C, Hege H-C, Noack BR, Wygnanski I (2011) Three-dimensional coherent structures in a swirling jet undergoing vortex breakdown: stability analysis and empirical mode construction. J Fluid Mech 679:383–414MATHCrossRef Oberleithner K, Sieber M, Nayeri CN, Paschereit CO, Petz C, Hege H-C, Noack BR, Wygnanski I (2011) Three-dimensional coherent structures in a swirling jet undergoing vortex breakdown: stability analysis and empirical mode construction. J Fluid Mech 679:383–414MATHCrossRef
Zurück zum Zitat Opfer L, Roisman IV, Tropea C (2013) Primary atomization in an airblast gas turbine atomizer. In: Janicka J, Sadiki A, Schäfer M, Heeger C (eds) Flow and combustion in advanced gas turbine combustors. Fluid mechanics and its applications, vol 1581. Springer, Dordrecht, pp 3–27CrossRef Opfer L, Roisman IV, Tropea C (2013) Primary atomization in an airblast gas turbine atomizer. In: Janicka J, Sadiki A, Schäfer M, Heeger C (eds) Flow and combustion in advanced gas turbine combustors. Fluid mechanics and its applications, vol 1581. Springer, Dordrecht, pp 3–27CrossRef
Zurück zum Zitat Palies P, Durox D, Schuller T, Candel S (2011) Experimental study on the effect of swirler geometry and swirl number on flame describing functions. Combust Sci Technol 183:704–717CrossRef Palies P, Durox D, Schuller T, Candel S (2011) Experimental study on the effect of swirler geometry and swirl number on flame describing functions. Combust Sci Technol 183:704–717CrossRef
Zurück zum Zitat Raffel M, Willert CE, Kompenhans J (2007) Particle image velocimetry: a practical guide. Springer, BerlinCrossRef Raffel M, Willert CE, Kompenhans J (2007) Particle image velocimetry: a practical guide. Springer, BerlinCrossRef
Zurück zum Zitat Rajamanickam K, Basu S (2018) Insights into the dynamics of conical breakdown modes in coaxial swirling flow field. J Fluid Mech 853:72–110MathSciNetMATHCrossRef Rajamanickam K, Basu S (2018) Insights into the dynamics of conical breakdown modes in coaxial swirling flow field. J Fluid Mech 853:72–110MathSciNetMATHCrossRef
Zurück zum Zitat Rajamanickam K, Potnis A, Kumar KS, Sivakumar D, Basu S (2019) On the influence of geometrical parameters on the spray characteristics of high shear injectors. Exp Therm Fluid Sci 109:109872CrossRef Rajamanickam K, Potnis A, Kumar KS, Sivakumar D, Basu S (2019) On the influence of geometrical parameters on the spray characteristics of high shear injectors. Exp Therm Fluid Sci 109:109872CrossRef
Zurück zum Zitat Raynal L (1997) Instabilite et entrainement à l’interface d’une couche de melange liquide-gaz. Ph. D. thesis, Université Joseph Fourier (Grenoble) Raynal L (1997) Instabilite et entrainement à l’interface d’une couche de melange liquide-gaz. Ph. D. thesis, Université Joseph Fourier (Grenoble)
Zurück zum Zitat Reitz RD, Bracco FV (1982) Mechanism of atomization of a liquid jet. Phys Fluids 25:1730–1742MATHCrossRef Reitz RD, Bracco FV (1982) Mechanism of atomization of a liquid jet. Phys Fluids 25:1730–1742MATHCrossRef
Zurück zum Zitat Rowley CW, Mezić I, Bagheri S, Schlatter P, Henningson DS (2009) Spectral analysis of nonlinear flows. J Fluid Mech 641:115–127MathSciNetMATHCrossRef Rowley CW, Mezić I, Bagheri S, Schlatter P, Henningson DS (2009) Spectral analysis of nonlinear flows. J Fluid Mech 641:115–127MathSciNetMATHCrossRef
Zurück zum Zitat Roy S, Yi T, Jiang N, Gunaratne GH, Chterev I, Emerson B, Lieuwen T, Caswell AW, Gord JR (2017) Dynamics of robust structures in turbulent swirling reacting flows. J Fluid Mech 816:554–585MathSciNetMATHCrossRef Roy S, Yi T, Jiang N, Gunaratne GH, Chterev I, Emerson B, Lieuwen T, Caswell AW, Gord JR (2017) Dynamics of robust structures in turbulent swirling reacting flows. J Fluid Mech 816:554–585MathSciNetMATHCrossRef
Zurück zum Zitat Sarpkaya T (1971) Vortex breakdown in swirling conical flows. AIAA J 9:1792–1799CrossRef Sarpkaya T (1971) Vortex breakdown in swirling conical flows. AIAA J 9:1792–1799CrossRef
Zurück zum Zitat Sciacchitano A, Neal DR, Smith BL, Warner SO, Vlachos PP, Wieneke B, Scarano F (2015) Collaborative framework for PIV uncertainty quantification: comparative assessment of methods. Meas Sci Technol 26:074004CrossRef Sciacchitano A, Neal DR, Smith BL, Warner SO, Vlachos PP, Wieneke B, Scarano F (2015) Collaborative framework for PIV uncertainty quantification: comparative assessment of methods. Meas Sci Technol 26:074004CrossRef
Zurück zum Zitat Sé, Ducruix B, Schuller T, Durox D, Sé, Candel B (2003) Combustion dynamics and instabilities: elementary coupling and driving mechanisms. J Propul Power 19:722–734CrossRef Sé, Ducruix B, Schuller T, Durox D, Sé, Candel B (2003) Combustion dynamics and instabilities: elementary coupling and driving mechanisms. J Propul Power 19:722–734CrossRef
Zurück zum Zitat Sheen HJ, Chen WJ, Jeng SY, Huang TL (1996) Correlation of swirl number for a radial-type swirl generator. Exp Thermal Fluid Sci 12:444–451CrossRef Sheen HJ, Chen WJ, Jeng SY, Huang TL (1996) Correlation of swirl number for a radial-type swirl generator. Exp Thermal Fluid Sci 12:444–451CrossRef
Zurück zum Zitat Sirovich L (1987) Turbulence and the dynamics of coherent structures. Part I: coherent structures. Q Appl Math 45:561–571MATHCrossRef Sirovich L (1987) Turbulence and the dynamics of coherent structures. Part I: coherent structures. Q Appl Math 45:561–571MATHCrossRef
Zurück zum Zitat Stevens E, Held T, Mongia H (2003) Swirl cup modeling part VII: partially-premixed laminar flamelet model validation and simulation of a single-cup combustor with gaseous n-heptane. In: 41st aerospace sciences meeting and exhibit. p 488 Stevens E, Held T, Mongia H (2003) Swirl cup modeling part VII: partially-premixed laminar flamelet model validation and simulation of a single-cup combustor with gaseous n-heptane. In: 41st aerospace sciences meeting and exhibit. p 488
Zurück zum Zitat Stöhr M, Boxx I, Carter C, Meier W (2011a) Dynamics of lean blowout of a swirl-stabilized flame in a gas turbine model combustor. Proc Combust Inst 33:2953–2960CrossRef Stöhr M, Boxx I, Carter C, Meier W (2011a) Dynamics of lean blowout of a swirl-stabilized flame in a gas turbine model combustor. Proc Combust Inst 33:2953–2960CrossRef
Zurück zum Zitat Stöhr M, Sadanandan R, Meier W (2011b) Phase-resolved characterization of vortex–flame interaction in a turbulent swirl flame. Exp Fluids 51:1153–1167CrossRef Stöhr M, Sadanandan R, Meier W (2011b) Phase-resolved characterization of vortex–flame interaction in a turbulent swirl flame. Exp Fluids 51:1153–1167CrossRef
Zurück zum Zitat Syred N (2006) A review of oscillation mechanisms and the role of the precessing vortex core (PVC) in swirl combustion systems. Prog Energy Combust Sci 32:93–161CrossRef Syred N (2006) A review of oscillation mechanisms and the role of the precessing vortex core (PVC) in swirl combustion systems. Prog Energy Combust Sci 32:93–161CrossRef
Zurück zum Zitat Syred N, Beer JM (1974) Combustion in swirling flows: a review. Combust Flame 23:143–201CrossRef Syred N, Beer JM (1974) Combustion in swirling flows: a review. Combust Flame 23:143–201CrossRef
Zurück zum Zitat Vanierschot M, Ogus G (2019) Experimental investigation of the precessing vortex core in annular swirling jet flows in the transitional regime. Exp Therm Fluid Sci 106:148–158CrossRef Vanierschot M, Ogus G (2019) Experimental investigation of the precessing vortex core in annular swirling jet flows in the transitional regime. Exp Therm Fluid Sci 106:148–158CrossRef
Zurück zum Zitat Varga CM, Lasheras JC, Hopfinger EJ (2003) Initial breakup of a small-diameter liquid jet by a high-speed gas stream. J Fluid Mech 497:405–434MATHCrossRef Varga CM, Lasheras JC, Hopfinger EJ (2003) Initial breakup of a small-diameter liquid jet by a high-speed gas stream. J Fluid Mech 497:405–434MATHCrossRef
Zurück zum Zitat Wang S, Yang V (2005) Unsteady flow evolution in swirl injectors with radial entry. II. External excitations. Phys Fluids 17:045107MATHCrossRef Wang S, Yang V (2005) Unsteady flow evolution in swirl injectors with radial entry. II. External excitations. Phys Fluids 17:045107MATHCrossRef
Zurück zum Zitat Wang S, Hsieh S-Y, Yang V (2005) Unsteady flow evolution in swirl injector with radial entry. I. Stationary conditions. Phys Fluids 17:045106MATHCrossRef Wang S, Hsieh S-Y, Yang V (2005) Unsteady flow evolution in swirl injector with radial entry. I. Stationary conditions. Phys Fluids 17:045106MATHCrossRef
Zurück zum Zitat Wang S, Yang V, Hsiao G, Hsieh S-Y, Mongia HC (2007) Large-eddy simulations of gas-turbine swirl injector flow dynamics. J Fluid Mech 583:99–122MATHCrossRef Wang S, Yang V, Hsiao G, Hsieh S-Y, Mongia HC (2007) Large-eddy simulations of gas-turbine swirl injector flow dynamics. J Fluid Mech 583:99–122MATHCrossRef
Zurück zum Zitat Wieneke B (2015) PIV uncertainty quantification from correlation statistics. Meas Sci Technol 26:074002CrossRef Wieneke B (2015) PIV uncertainty quantification from correlation statistics. Meas Sci Technol 26:074002CrossRef
Zurück zum Zitat Xue J, Jog MA, Jeng SM, Steinthorsson E, Benjamin MA (2004) Effect of geometric parameters on simplex atomizer performance. AIAA J 42:2408–2415CrossRef Xue J, Jog MA, Jeng SM, Steinthorsson E, Benjamin MA (2004) Effect of geometric parameters on simplex atomizer performance. AIAA J 42:2408–2415CrossRef
Zurück zum Zitat Zandian A, Sirignano WA, Hussain F (2018) Understanding liquid-jet atomization cascades via vortex dynamics. J Fluid Mech 843:293–354MathSciNetMATHCrossRef Zandian A, Sirignano WA, Hussain F (2018) Understanding liquid-jet atomization cascades via vortex dynamics. J Fluid Mech 843:293–354MathSciNetMATHCrossRef
Metadaten
Titel
On the dynamics of sprays in complex gas turbine swirl injectors
verfasst von
Kuppuraj Rajamanickam
Aditya Potnis
Sonu Kumar
Saptarshi Basu
Publikationsdatum
01.02.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Experiments in Fluids / Ausgabe 2/2020
Print ISSN: 0723-4864
Elektronische ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-019-2871-6

Weitere Artikel der Ausgabe 2/2020

Experiments in Fluids 2/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.